Spaces:
Running
Running
File size: 1,432 Bytes
d0696ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
print(">>> Starting app.py")
import torch
import torchvision
from PIL import Image
import torchvision.transforms as T
import numpy as np
import gradio as gr
# Load pretrained DeepLabV3 model once
model = torchvision.models.segmentation.deeplabv3_resnet101(pretrained=True)
model.eval()
# Define background removal function
def remove_bg(img):
# Preprocess image
transform = T.Compose([
T.Resize(520),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
input_tensor = transform(img).unsqueeze(0)
# Run inference
with torch.no_grad():
output = model(input_tensor)['out'][0]
mask = output.argmax(0).byte().cpu().numpy()
# Resize mask to original image
img_np = np.array(img)
mask_resized = Image.fromarray(mask).resize((img_np.shape[1], img_np.shape[0]))
mask_np = np.array(mask_resized)
# Apply mask: keep object, set background white
removed_bg = img_np.copy()
removed_bg[mask_np == 0] = [255, 255, 255]
return Image.fromarray(removed_bg)
# Create Gradio interface
demo = gr.Interface(
fn=remove_bg,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Background Remover",
description="Upload an image and get the background removed instantly!"
)
if __name__ == "__main__":
demo.launch()
|