File size: 13,958 Bytes
cb0e20d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
Metadata-Version: 2.4
Name: ultralytics
Version: 8.3.63
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
Maintainer-email: Ultralytics <hello@ultralytics.com>
License: AGPL-3.0
Project-URL: Homepage, https://ultralytics.com
Project-URL: Source, https://github.com/ultralytics/ultralytics
Project-URL: Documentation, https://docs.ultralytics.com
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
Project-URL: Changelog, https://github.com/ultralytics/ultralytics/releases
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,YOLO11,HUB,Ultralytics
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Topic :: Software Development
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Image Recognition
Classifier: Operating System :: POSIX :: Linux
Classifier: Operating System :: MacOS
Classifier: Operating System :: Microsoft :: Windows
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: numpy>=1.23.0
Requires-Dist: numpy<2.0.0; sys_platform == "darwin"
Requires-Dist: matplotlib>=3.3.0
Requires-Dist: opencv-python>=4.6.0
Requires-Dist: pillow>=7.1.2
Requires-Dist: pyyaml>=5.3.1
Requires-Dist: requests>=2.23.0
Requires-Dist: scipy>=1.4.1
Requires-Dist: torch>=1.8.0
Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
Requires-Dist: torchvision>=0.9.0
Requires-Dist: tqdm>=4.64.0
Requires-Dist: psutil
Requires-Dist: py-cpuinfo
Requires-Dist: pandas>=1.1.4
Requires-Dist: seaborn>=0.11.0
Requires-Dist: ultralytics-thop>=2.0.0
Provides-Extra: dev
Requires-Dist: ipython; extra == "dev"
Requires-Dist: pytest; extra == "dev"
Requires-Dist: pytest-cov; extra == "dev"
Requires-Dist: coverage[toml]; extra == "dev"
Requires-Dist: mkdocs>=1.6.0; extra == "dev"
Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
Requires-Dist: mkdocstrings[python]; extra == "dev"
Requires-Dist: mkdocs-redirects; extra == "dev"
Requires-Dist: mkdocs-ultralytics-plugin>=0.1.8; extra == "dev"
Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
Provides-Extra: export
Requires-Dist: onnx>=1.12.0; extra == "export"
Requires-Dist: coremltools>=7.0; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.11") and extra == "export"
Requires-Dist: openvino>=2024.0.0; extra == "export"
Requires-Dist: tensorflow>=2.0.0; extra == "export"
Requires-Dist: tensorflowjs>=3.9.0; extra == "export"
Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
Requires-Dist: keras; extra == "export"
Requires-Dist: flatbuffers<100,>=23.5.26; platform_machine == "aarch64" and extra == "export"
Requires-Dist: numpy==1.23.5; platform_machine == "aarch64" and extra == "export"
Requires-Dist: h5py!=3.11.0; platform_machine == "aarch64" and extra == "export"
Provides-Extra: solutions
Requires-Dist: shapely>=2.0.0; extra == "solutions"
Requires-Dist: streamlit; extra == "solutions"
Provides-Extra: logging
Requires-Dist: comet; extra == "logging"
Requires-Dist: tensorboard>=2.13.0; extra == "logging"
Requires-Dist: dvclive>=2.12.0; extra == "logging"
Provides-Extra: extra
Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
Requires-Dist: ipython; extra == "extra"
Requires-Dist: albumentations>=1.4.6; extra == "extra"
Requires-Dist: pycocotools>=2.0.7; extra == "extra"
Dynamic: license-file



<div align="center">
<h1>YOLOv12</h1>
<h3>YOLOv12: Attention-Centric Real-Time Object Detectors</h3>

[Yunjie Tian](https://sunsmarterjie.github.io/)<sup>1</sup>, [Qixiang Ye](https://people.ucas.ac.cn/~qxye?language=en)<sup>2</sup>, [David Doermann](https://cse.buffalo.edu/~doermann/)<sup>1</sup>

<sup>1</sup>  University at Buffalo, SUNY, <sup>2</sup> University of Chinese Academy of Sciences.


<p align="center">
  <img src="assets/tradeoff_turbo.svg" width=90%> <br>
  Comparison with popular methods in terms of latency-accuracy (left) and FLOPs-accuracy (right) trade-offs
</p>

</div>

[![arXiv](https://img.shields.io/badge/arXiv-2502.12524-b31b1b.svg)](https://arxiv.org/abs/2502.12524) [![Hugging Face Demo](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12) <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov12-object-detection-model.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> [![Kaggle Notebook](https://img.shields.io/badge/Kaggle-Notebook-blue?logo=kaggle)](https://www.kaggle.com/code/jxxn03x/yolov12-on-custom-data) [![deploy](https://media.roboflow.com/deploy.svg)](https://blog.roboflow.com/use-yolov12-with-roboflow/#deploy-yolov12-models-with-roboflow) [![Openbayes](https://img.shields.io/static/v1?label=Demo&message=OpenBayes%E8%B4%9D%E5%BC%8F%E8%AE%A1%E7%AE%97&color=green)](https://openbayes.com/console/public/tutorials/A4ac4xNrUCQ) 

## Updates

- 2025/03/18: Some guys are interested in the heatmap. See this [issue](https://github.com/sunsmarterjie/yolov12/issues/74).

- 2025/03/09: **YOLOv12-turbo** is released: a faster YOLOv12 version.

- 2025/02/24: Blogs: [ultralytics](https://docs.ultralytics.com/models/yolo12/), [LearnOpenCV](https://learnopencv.com/yolov12/). Thanks to them!

- 2025/02/22: [YOLOv12 TensorRT CPP Inference Repo + Google Colab Notebook](https://github.com/mohamedsamirx/YOLOv12-TensorRT-CPP).

- 2025/02/22: [Android deploy](https://github.com/mpj1234/ncnn-yolov12-android/tree/main) / [TensorRT-YOLO](https://github.com/laugh12321/TensorRT-YOLO) accelerates yolo12. Thanks to them!

- 2025/02/21: Try yolo12 for classification, oriented bounding boxes, pose estimation, and instance segmentation at [ultralytics](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/12). Please pay attention to this [issue](https://github.com/sunsmarterjie/yolov12/issues/29). Thanks to them! 

- 2025/02/20: [Any computer or edge device?](https://github.com/roboflow/inference)  / [ONNX CPP Version](https://github.com/mohamedsamirx/YOLOv12-ONNX-CPP). Thanks to them! 
  
- 2025/02/20: Train a yolov12 model on a custom dataset: [Blog](https://blog.roboflow.com/train-yolov12-model/) and [Youtube](https://www.youtube.com/watch?v=fksJmIMIfXo). / [Step-by-step instruction](https://youtu.be/dO8k5rgXG0M). Thanks to them! 

- 2025/02/19: [arXiv version](https://arxiv.org/abs/2502.12524) is public. [Demo](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12) is available (try [Demo2](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12_demo2) [Demo3](https://huggingface.co/spaces/sunsmarterjieleaf/yolov12_demo3) if busy).


<details>
  <summary>
  <font size="+1">Abstract</font>
  </summary>
Enhancing the network architecture of the YOLO framework has been crucial for a long time but has focused on CNN-based improvements despite the proven superiority of attention mechanisms in modeling capabilities. This is because attention-based models cannot match the speed of CNN-based models. This paper proposes an attention-centric YOLO framework, namely YOLOv12, that matches the speed of previous CNN-based ones while harnessing the performance benefits of attention mechanisms.

YOLOv12 surpasses all popular real-time object detectors in accuracy with competitive speed. For example, YOLOv12-N achieves 40.6% mAP with an inference latency of 1.64 ms on a T4 GPU, outperforming advanced YOLOv10-N / YOLOv11-N by 2.1%/1.2% mAP with a comparable speed. This advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-time detectors that improve DETR, such as RT-DETR / RT-DETRv2: YOLOv12-S beats RT-DETR-R18 / RT-DETRv2-R18 while running 42% faster, using only 36% of the computation and 45% of the parameters.
</details>


## Main Results

**Turbo (default version)**:
| Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
| :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
| [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12n.pt) | 640                   | 40.4                 | 1.60                            | 2.5                | 6.0               |
| [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12s.pt) | 640                   | 47.6                 | 2.42                            | 9.1                | 19.4              |
| [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12m.pt) | 640                   | 52.5                 | 4.27                            | 19.6               | 59.8              |
| [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12l.pt) | 640                   | 53.8                 | 5.83                            | 26.5               | 82.4              |
| [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12x.pt) | 640                   | 55.4                 | 10.38                           | 59.3               | 184.6             |

[**v1.0**](https://github.com/sunsmarterjie/yolov12/tree/V1.0):
| Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>T4 TensorRT10<br> | params<br><sup>(M) | FLOPs<br><sup>(G) |
| :----------------------------------------------------------------------------------- | :-------------------: | :-------------------:| :------------------------------:| :-----------------:| :---------------:|
| [YOLO12n](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12n.pt) | 640                   | 40.6                 | 1.64                            | 2.6                | 6.5               |
| [YOLO12s](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12s.pt) | 640                   | 48.0                 | 2.61                            | 9.3                | 21.4              |
| [YOLO12m](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12m.pt) | 640                   | 52.5                 | 4.86                            | 20.2               | 67.5              |
| [YOLO12l](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12l.pt) | 640                   | 53.7                 | 6.77                            | 26.4               | 88.9              |
| [YOLO12x](https://github.com/sunsmarterjie/yolov12/releases/download/v1.0/yolov12x.pt) | 640                   | 55.2                 | 11.79                           | 59.1               | 199.0             |

## Installation
```
wget https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu11torch2.2cxx11abiFALSE-cp311-cp311-linux_x86_64.whl
conda create -n yolov12 python=3.11
conda activate yolov12
pip install -r requirements.txt
pip install -e .
```

## Validation
[`yolov12n`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12n.pt)
[`yolov12s`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12s.pt)
[`yolov12m`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12m.pt)
[`yolov12l`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12l.pt)
[`yolov12x`](https://github.com/sunsmarterjie/yolov12/releases/download/turbo/yolov12x.pt)

```python
from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.val(data='coco.yaml', save_json=True)
```

## Training 
```python
from ultralytics import YOLO

model = YOLO('yolov12n.yaml')

# Train the model
results = model.train(
  data='coco.yaml',
  epochs=600, 
  batch=256, 
  imgsz=640,
  scale=0.5,  # S:0.9; M:0.9; L:0.9; X:0.9
  mosaic=1.0,
  mixup=0.0,  # S:0.05; M:0.15; L:0.15; X:0.2
  copy_paste=0.1,  # S:0.15; M:0.4; L:0.5; X:0.6
  device="0,1,2,3",
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

```

## Prediction
```python
from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.predict()
```

## Export
```python
from ultralytics import YOLO

model = YOLO('yolov12{n/s/m/l/x}.pt')
model.export(format="engine", half=True)  # or format="onnx"
```


## Demo

```
python app.py
# Please visit http://127.0.0.1:7860
```


## Acknowledgement

The code is based on [ultralytics](https://github.com/ultralytics/ultralytics). Thanks for their excellent work!

## Citation

```BibTeX
@article{tian2025yolov12,
  title={YOLOv12: Attention-Centric Real-Time Object Detectors},
  author={Tian, Yunjie and Ye, Qixiang and Doermann, David},
  journal={arXiv preprint arXiv:2502.12524},
  year={2025}
}
```