Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,731 Bytes
12edc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
IC-Custom Gradio Application
This module defines the UI and glue logic to run the IC-Custom pipeline
via Gradio. The code aims to keep UI text user-friendly while keeping the
implementation readable and maintainable.
"""
import os
import sys
import numpy as np
import torch
import gradio as gr
import spaces
from PIL import Image
import time
# Add current directory to path for imports
sys.path.append(os.getcwd() + '/app')
# Import modular components
from config import parse_args, load_config, setup_environment
from ui_components import (
create_theme, create_css, create_header_section, create_customization_section,
create_image_input_section, create_prompt_section, create_advanced_options_section,
create_mask_operation_section, create_output_section, create_examples_section,
create_citation_section
)
from event_handlers import setup_event_handlers
from business_logic import (
init_image_target_1, init_image_target_2, init_image_reference,
undo_seg_points, segmentation, get_point, get_brush,
dilate_mask, erode_mask, bounding_box,
change_input_mask_mode, change_custmization_mode, change_seg_ref_mode,
vlm_auto_generate, vlm_auto_polish, save_results, set_mobile_predictor,
set_ben2_model, set_vlm_processor, set_vlm_model,
)
# Import other dependencies
from utils import (
get_sam_predictor, get_vlm, get_ben2_model,
prepare_input_images, get_mask_type_ids
)
from examples import GRADIO_EXAMPLES, MASK_TGT, IMG_GEN
from ic_custom.pipelines.ic_custom_pipeline import ICCustomPipeline
# Global variables for pipeline and assets cache directory
PIPELINE = None
ASSETS_CACHE_DIR = None
# Force Hugging Face to re-download models and clear cache
os.environ["HF_HUB_FORCE_DOWNLOAD"] = "1"
os.environ["HF_HUB_DISABLE_TELEMETRY"] = "1"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf_cache" # Use temp directory for Spaces
os.environ["HF_HOME"] = "/tmp/hf_home" # Use temp directory for Spaces
os.environ["GRADIO_TEMP_DIR"] = os.path.abspath(os.path.join(os.path.dirname(__file__), "gradio_cache"))
def set_pipeline(pipeline):
"""Inject pipeline into this module without changing function signatures."""
global PIPELINE
PIPELINE = pipeline
def set_assets_cache_dir(assets_cache_dir):
"""Inject assets cache dir into this module without changing function signatures."""
global ASSETS_CACHE_DIR
ASSETS_CACHE_DIR = assets_cache_dir
def initialize_models(args, cfg, device, weight_dtype):
"""Initialize all required models."""
# Load IC-Custom pipeline
pipeline = ICCustomPipeline(
clip_path=cfg.checkpoint_config.clip_path if os.path.exists(cfg.checkpoint_config.clip_path) else "clip-vit-large-patch14",
t5_path=cfg.checkpoint_config.t5_path if os.path.exists(cfg.checkpoint_config.t5_path) else "t5-v1_1-xxl",
siglip_path=cfg.checkpoint_config.siglip_path if os.path.exists(cfg.checkpoint_config.siglip_path) else "siglip-so400m-patch14-384",
ae_path=cfg.checkpoint_config.ae_path if os.path.exists(cfg.checkpoint_config.ae_path) else "flux-fill-dev-ae",
dit_path=cfg.checkpoint_config.dit_path if os.path.exists(cfg.checkpoint_config.dit_path) else "flux-fill-dev-dit",
redux_path=cfg.checkpoint_config.redux_path if os.path.exists(cfg.checkpoint_config.redux_path) else "flux1-redux-dev",
lora_path=cfg.checkpoint_config.lora_path if os.path.exists(cfg.checkpoint_config.lora_path) else "dit_lora_0x1561",
img_txt_in_path=cfg.checkpoint_config.img_txt_in_path if os.path.exists(cfg.checkpoint_config.img_txt_in_path) else "dit_txt_img_in_0x1561",
boundary_embeddings_path=cfg.checkpoint_config.boundary_embeddings_path if os.path.exists(cfg.checkpoint_config.boundary_embeddings_path) else "dit_boundary_embeddings_0x1561",
task_register_embeddings_path=cfg.checkpoint_config.task_register_embeddings_path if os.path.exists(cfg.checkpoint_config.task_register_embeddings_path) else "dit_task_register_embeddings_0x1561",
network_alpha=cfg.model_config.network_alpha,
double_blocks_idx=cfg.model_config.double_blocks,
single_blocks_idx=cfg.model_config.single_blocks,
device=device,
weight_dtype=weight_dtype,
offload=True,
)
pipeline.set_pipeline_offload(True)
# pipeline.set_show_progress(True)
# Load SAM predictor
mobile_predictor = get_sam_predictor(cfg.checkpoint_config.sam_path, device)
# Load VLM if enabled
vlm_processor, vlm_model = None, None
if args.enable_vlm_for_prompt:
vlm_processor, vlm_model = get_vlm(
cfg.checkpoint_config.vlm_path,
device=device,
torch_dtype=weight_dtype,
)
# Load BEN2 model if enabled
ben2_model = None
if args.enable_ben2_for_mask_ref:
ben2_model = get_ben2_model(cfg.checkpoint_config.ben2_path, device)
return pipeline, mobile_predictor, vlm_processor, vlm_model, ben2_model
@spaces.GPU(duration=140)
def run_model(
image_target_state, mask_target_state, image_reference_ori_state,
image_reference_rmbg_state, prompt, seed, guidance, true_gs, num_steps,
num_images_per_prompt, use_background_preservation, background_blend_threshold,
aspect_ratio, custmization_mode, seg_ref_mode, input_mask_mode,
progress=gr.Progress()
):
"""Run IC-Custom pipeline with current UI state and return images."""
start_ts = time.time()
progress(0, desc="Starting generation...")
# Select reference image and check inputs
if seg_ref_mode == "Masked Ref":
image_reference_state = image_reference_rmbg_state
else:
image_reference_state = image_reference_ori_state
if image_reference_state is None:
gr.Warning('Please upload the reference image')
return None, seed, gr.update(placeholder="Last Input: " + prompt, value="")
if image_target_state is None and custmization_mode != "Position-free":
gr.Warning('Please upload the target image and mask it')
return None, seed, gr.update(placeholder="Last Input: " + prompt, value="")
if custmization_mode == "Position-aware" and mask_target_state is None:
gr.Warning('Please select/draw the target mask')
return None, seed, gr.update(placeholder=prompt, value="")
mask_type_ids = get_mask_type_ids(custmization_mode, input_mask_mode)
from constants import ASPECT_RATIO_TEMPLATE
output_w, output_h = ASPECT_RATIO_TEMPLATE[aspect_ratio]
image_reference, image_target, mask_target = prepare_input_images(
image_reference_state, custmization_mode, image_target_state, mask_target_state,
width=output_w, height=output_h,
force_resize_long_edge="long edge" in aspect_ratio,
return_type="pil"
)
gr.Info(f"Output WH resolution: {image_target.size[0]}px x {image_target.size[1]}px")
# Run the model
if seed == -1:
seed = torch.randint(0, 2147483647, (1,)).item()
width, height = image_target.size[0] + image_reference.size[0], image_target.size[1]
with torch.no_grad():
output_img = PIPELINE(
prompt=prompt, width=width, height=height, guidance=guidance,
num_steps=num_steps, seed=seed, img_ref=image_reference,
img_target=image_target, mask_target=mask_target, img_ip=image_reference,
cond_w_regions=[image_reference.size[0]], mask_type_ids=mask_type_ids,
use_background_preservation=use_background_preservation,
background_blend_threshold=background_blend_threshold, true_gs=true_gs,
neg_prompt="worst quality, normal quality, low quality, low res, blurry,",
num_images_per_prompt=num_images_per_prompt,
gradio_progress=progress,
)
elapsed = time.time() - start_ts
progress(1.0, desc=f"Completed in {elapsed:.2f}s!")
gr.Info(f"Finished in {elapsed:.2f}s")
return output_img, -1, gr.update(placeholder=f"Last Input ({elapsed:.2f}s): " + prompt, value="")
def example_pipeline(
image_reference, image_target_1, image_target_2, custmization_mode,
input_mask_mode, seg_ref_mode, prompt, seed, true_gs, eg_idx,
num_steps, guidance
):
"""Handle example loading in the UI."""
if seg_ref_mode == "Full Ref":
image_reference_ori_state = np.array(image_reference.convert("RGB"))
image_reference_rmbg_state = None
image_reference_state = image_reference_ori_state
else:
image_reference_rmbg_state = np.array(image_reference.convert("RGB"))
image_reference_ori_state = None
image_reference_state = image_reference_rmbg_state
if custmization_mode == "Position-aware":
if input_mask_mode == "Precise mask":
image_target_state = np.array(image_target_1.convert("RGB"))
else:
image_target_state = np.array(image_target_2['composite'].convert("RGB"))
mask_target_state = np.array(Image.open(MASK_TGT[int(eg_idx)]))
else: # Position-free mode
# For Position-free, use the target image from IMG_TGT1 and corresponding mask
image_target_state = np.array(image_target_1.convert("RGB"))
mask_target_state = np.array(Image.open(MASK_TGT[int(eg_idx)]))
mask_target_binary = mask_target_state / 255
masked_img = image_target_state * mask_target_binary
masked_img_pil = Image.fromarray(masked_img.astype("uint8"))
output_mask_pil = Image.fromarray(mask_target_state.astype("uint8"))
if custmization_mode == "Position-aware":
mask_gallery = [masked_img_pil, output_mask_pil]
else:
mask_gallery = gr.skip()
result_gallery = [Image.open(IMG_GEN[int(eg_idx)]).convert("RGB")]
if custmization_mode == "Position-free":
return (image_reference_ori_state, image_reference_rmbg_state, image_target_state,
mask_target_state, mask_gallery, result_gallery,
gr.update(visible=False), gr.update(visible=False))
if input_mask_mode == "Precise mask":
return (image_reference_ori_state, image_reference_rmbg_state, image_target_state,
mask_target_state, mask_gallery, result_gallery,
gr.update(visible=True), gr.update(visible=False))
else:
# Ensure ImageEditor has a proper background so brush + undo work
try:
bg_img = image_target_2.get('background') or image_target_2.get('composite')
except Exception:
bg_img = image_target_2
return (
image_reference_ori_state, image_reference_rmbg_state, image_target_state,
mask_target_state, mask_gallery, result_gallery,
gr.update(visible=False),
gr.update(visible=True, value={"background": bg_img, "layers": [], "composite": bg_img}),
)
def create_application():
"""Create the main Gradio application."""
# Create theme and CSS
theme = create_theme()
css = create_css()
with gr.Blocks(theme=theme, css=css) as demo:
with gr.Column(elem_id="global_glass_container"):
# Create UI sections
create_header_section()
# Hidden components
eg_idx = gr.Textbox(label="eg_idx", visible=False, value="-1")
# State variables
image_target_state = gr.State(value=None)
mask_target_state = gr.State(value=None)
image_reference_ori_state = gr.State(value=None)
image_reference_rmbg_state = gr.State(value=None)
selected_points = gr.State(value=[])
# Main UI content with optimized left-right layout
with gr.Column(elem_id="glass_card"):
# Top section - Mode selection (full width)
custmization_mode, md_custmization_mode = create_customization_section()
# Main layout: Left for inputs, Right for outputs
with gr.Row(equal_height=False):
# LEFT COLUMN - ALL INPUTS
with gr.Column(scale=3, min_width=400):
# Image input section
(image_reference, input_mask_mode, image_target_1, image_target_2,
undo_target_seg_button, md_image_reference, md_input_mask_mode,
md_target_image) = create_image_input_section()
# Text prompt section
prompt, vlm_generate_btn, vlm_polish_btn, md_prompt = create_prompt_section()
# Advanced options (collapsible)
(aspect_ratio, seg_ref_mode, move_to_center, use_background_preservation,
background_blend_threshold, seed, num_images_per_prompt, guidance,
num_steps, true_gs) = create_advanced_options_section()
# RIGHT COLUMN - ALL OUTPUTS
with gr.Column(scale=2, min_width=350):
# Mask preview and operations
(mask_gallery, dilate_button, erode_button, bounding_box_button,
md_mask_operation) = create_mask_operation_section()
# Generation controls and results
result_gallery, submit_button, clear_btn, md_submit = create_output_section()
with gr.Row(elem_id="glass_card"):
# Examples section
examples = create_examples_section(
GRADIO_EXAMPLES,
inputs=[
image_reference,
image_target_1,
image_target_2,
custmization_mode,
input_mask_mode,
seg_ref_mode,
prompt,
seed,
true_gs,
eg_idx,
num_steps,
guidance
],
outputs=[
image_reference_ori_state,
image_reference_rmbg_state,
image_target_state,
mask_target_state,
mask_gallery,
result_gallery,
image_target_1,
image_target_2,
],
fn=example_pipeline,
)
with gr.Row(elem_id="glass_card"):
# Citation section
create_citation_section()
# Setup event handlers
setup_event_handlers(
## UI components
input_mask_mode, image_target_1, image_target_2, undo_target_seg_button,
custmization_mode, dilate_button, erode_button, bounding_box_button,
mask_gallery, md_input_mask_mode, md_target_image, md_mask_operation,
md_prompt, md_submit, result_gallery, image_target_state, mask_target_state,
seg_ref_mode, image_reference_ori_state, move_to_center,
image_reference, image_reference_rmbg_state,
## Functions
change_input_mask_mode, change_custmization_mode,
change_seg_ref_mode,
init_image_target_1, init_image_target_2, init_image_reference,
get_point, undo_seg_points,
get_brush,
# VLM buttons
vlm_generate_btn, vlm_polish_btn,
# VLM functions
vlm_auto_generate,
vlm_auto_polish,
dilate_mask, erode_mask, bounding_box,
run_model,
## Other components
selected_points, prompt,
use_background_preservation, background_blend_threshold, seed,
num_images_per_prompt, guidance, true_gs, num_steps, aspect_ratio,
submit_button,
eg_idx,
)
# Setup clear button
clear_btn.add(
[image_reference, image_target_1,image_target_2, mask_gallery, result_gallery,
selected_points, image_target_state, mask_target_state, prompt,
image_reference_ori_state, image_reference_rmbg_state]
)
return demo
def main():
"""Main entry point for the application."""
# Parse arguments and load config
args = parse_args()
cfg = load_config(args.config)
setup_environment(args)
# Initialize device and models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
weight_dtype = torch.bfloat16
pipeline, mobile_predictor, vlm_processor, vlm_model, ben2_model = initialize_models(
args, cfg, device, weight_dtype
)
set_pipeline(pipeline)
set_assets_cache_dir(args.assets_cache_dir)
# Inject mobile predictor into business logic module so get_point can access it without lambdas
set_mobile_predictor(mobile_predictor)
set_ben2_model(ben2_model)
set_vlm_processor(vlm_processor)
set_vlm_model(vlm_model)
# Create and launch the application
demo = create_application()
# Launch the demo
demo.launch(server_port=7860, server_name="0.0.0.0",
allowed_paths=[os.path.abspath(os.path.join(os.path.dirname(__file__), "gradio_cache")),
os.path.abspath(os.path.join(os.path.dirname(__file__), "results"))])
if __name__ == "__main__":
main() |