Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,653 Bytes
12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 9bc4f8c 12edc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
Business logic functions for IC-Custom application.
"""
import numpy as np
import torch
import cv2
import gradio as gr
from PIL import Image
from datetime import datetime
import json
import os
from scipy.ndimage import binary_dilation, binary_erosion
from constants import (
DEFAULT_BACKGROUND_BLEND_THRESHOLD, DEFAULT_SEED, DEFAULT_NUM_IMAGES,
DEFAULT_GUIDANCE, DEFAULT_TRUE_GS, DEFAULT_NUM_STEPS, DEFAULT_ASPECT_RATIO,
DEFAULT_DILATION_KERNEL_SIZE, DEFAULT_MARKER_SIZE, DEFAULT_MARKER_THICKNESS,
DEFAULT_MASK_ALPHA, DEFAULT_COLOR_ALPHA, TIMESTAMP_FORMAT, SEGMENTATION_COLORS, SEGMENTATION_MARKERS
)
from utils import run_vlm, construct_vlm_gen_prompt, construct_vlm_polish_prompt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Global holder for SAM mobile predictor injected from the app layer
MOBILE_PREDICTOR = None
BEN2_MODEL = None # ben2 model injected from the app layer
def set_mobile_predictor(predictor):
"""Inject SAM mobile predictor into this module without changing function signatures."""
global MOBILE_PREDICTOR
MOBILE_PREDICTOR = predictor
def set_ben2_model(ben2_model):
"""Inject ben2 model into this module without changing function signatures."""
global BEN2_MODEL
BEN2_MODEL = ben2_model
def set_vlm_processor(vlm_processor):
"""Inject vlm processor into this module without changing function signatures."""
global VLM_PROCESSOR
VLM_PROCESSOR = vlm_processor
def set_vlm_model(vlm_model):
"""Inject vlm model into this module without changing function signatures."""
global VLM_MODEL
VLM_MODEL = vlm_model
def init_image_target_1(target_image):
"""Initialize UI state when a target image is uploaded."""
# Handle both PIL Image (image_target_1) and ImageEditor dict (image_target_2)
try:
if isinstance(target_image, dict) and 'composite' in target_image:
# ImageEditor format (user-drawn mask)
image_target_state = np.array(target_image['composite'].convert("RGB"))
else:
# PIL Image format (precise mask)
image_target_state = np.array(target_image.convert("RGB"))
except Exception as e:
# If there's an error processing the image, skip initialization
return (
gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(),
gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(),
gr.skip(), gr.skip(), gr.update(value="-1")
)
selected_points = []
mask_target_state = None
prompt = None
mask_gallery = []
result_gallery = []
use_background_preservation = False
background_blend_threshold = DEFAULT_BACKGROUND_BLEND_THRESHOLD
seed = DEFAULT_SEED
num_images_per_prompt = DEFAULT_NUM_IMAGES
guidance = DEFAULT_GUIDANCE
true_gs = DEFAULT_TRUE_GS
num_steps = DEFAULT_NUM_STEPS
aspect_ratio_val = gr.update(value=DEFAULT_ASPECT_RATIO)
return (image_target_state, selected_points, mask_target_state, prompt,
mask_gallery, result_gallery, use_background_preservation,
background_blend_threshold, seed, num_images_per_prompt, guidance,
true_gs, num_steps, aspect_ratio_val)
def init_image_target_2(target_image):
"""Initialize UI state when a target image is uploaded."""
# Handle both PIL Image (image_target_1) and ImageEditor dict (image_target_2)
try:
if isinstance(target_image, dict) and 'composite' in target_image:
# ImageEditor format (user-drawn mask)
image_target_state = np.array(target_image['composite'].convert("RGB"))
else:
# PIL Image format (precise mask)
image_target_state = np.array(target_image.convert("RGB"))
except Exception as e:
# If there's an error processing the image, skip initialization
return (
gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(),
gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(),
gr.skip(), gr.skip(), gr.update(value="-1")
)
selected_points = gr.skip()
mask_target_state = gr.skip()
prompt = gr.skip()
mask_gallery = gr.skip()
result_gallery = gr.skip()
use_background_preservation = gr.skip()
background_blend_threshold = gr.skip()
seed = gr.skip()
num_images_per_prompt = gr.skip()
guidance = gr.skip()
true_gs = gr.skip()
num_steps = gr.skip()
aspect_ratio_val = gr.skip()
return (image_target_state, selected_points, mask_target_state, prompt,
mask_gallery, result_gallery, use_background_preservation,
background_blend_threshold, seed, num_images_per_prompt, guidance,
true_gs, num_steps, aspect_ratio_val)
def init_image_reference(image_reference):
"""Initialize all UI states when a reference image is uploaded."""
image_reference_state = np.array(image_reference.convert("RGB"))
image_reference_ori_state = image_reference_state
image_reference_rmbg_state = None
image_target_state = None
mask_target_state = None
prompt = None
mask_gallery = []
result_gallery = []
image_target_1_val = None
image_target_2_val = None
selected_points = []
input_mask_mode_val = gr.update(value="Precise mask")
seg_ref_mode_val = gr.update(value="Full Ref")
move_to_center = False
use_background_preservation = False
background_blend_threshold = DEFAULT_BACKGROUND_BLEND_THRESHOLD
seed = DEFAULT_SEED
num_images_per_prompt = DEFAULT_NUM_IMAGES
guidance = DEFAULT_GUIDANCE
true_gs = DEFAULT_TRUE_GS
num_steps = DEFAULT_NUM_STEPS
aspect_ratio_val = gr.update(value=DEFAULT_ASPECT_RATIO)
return (
image_reference_ori_state, image_reference_rmbg_state, image_target_state,
mask_target_state, prompt, mask_gallery, result_gallery, image_target_1_val,
image_target_2_val, selected_points, input_mask_mode_val, seg_ref_mode_val,
move_to_center, use_background_preservation, background_blend_threshold,
seed, num_images_per_prompt, guidance, true_gs, num_steps, aspect_ratio_val,
)
def undo_seg_points(orig_img, sel_pix):
"""Remove the latest segmentation point and recompute the preview mask."""
if len(sel_pix) != 0:
temp = orig_img.copy()
sel_pix.pop()
# Online show seg mask
if len(sel_pix) != 0:
temp, output_mask = segmentation(temp, sel_pix, MOBILE_PREDICTOR, SEGMENTATION_COLORS, SEGMENTATION_MARKERS)
output_mask_pil = Image.fromarray(output_mask.astype("uint8"))
masked_img_pil = Image.fromarray(np.where(output_mask > 0, orig_img, 0).astype("uint8"))
mask_gallery = [masked_img_pil, output_mask_pil]
else:
output_mask = None
mask_gallery = []
return temp.astype(np.uint8), output_mask, mask_gallery
else:
gr.Warning("Nothing to Undo")
return orig_img, None, []
def segmentation(img, sel_pix, mobile_predictor, colors, markers):
"""Run SAM-based segmentation given selected points and return previews."""
points = []
labels = []
for p, l in sel_pix:
points.append(p)
labels.append(l)
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
with torch.no_grad():
masks, _, _ = mobile_predictor.predict(
point_coords=np.array(points),
point_labels=np.array(labels),
multimask_output=False
)
output_mask = np.ones((masks.shape[1], masks.shape[2], 3)) * 255
for i in range(3):
output_mask[masks[0] == True, i] = 0.0
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[masks[0] == True, i] = color_mask[i]
masked_img = img / 255 * DEFAULT_MASK_ALPHA + mask_all * DEFAULT_COLOR_ALPHA
masked_img = masked_img * 255
# Draw points
for point, label in sel_pix:
cv2.drawMarker(
masked_img, point, colors[label],
markerType=markers[label],
markerSize=DEFAULT_MARKER_SIZE,
thickness=DEFAULT_MARKER_THICKNESS
)
return masked_img, output_mask
def get_point(img, sel_pix, evt: gr.SelectData):
"""Handle a user click on the target image to add a foreground point."""
if evt is None or not hasattr(evt, 'index'):
gr.Warning(f"Event object missing index attribute. Event type: {type(evt)}")
return img, None, []
sel_pix.append((evt.index, 1)) # append the foreground_point
# Online show seg mask
global MOBILE_PREDICTOR
masked_img_seg, output_mask = segmentation(img, sel_pix, MOBILE_PREDICTOR, SEGMENTATION_COLORS, SEGMENTATION_MARKERS)
# Apply dilation to output_mask
output_mask = 1 - output_mask
kernel = np.ones((DEFAULT_DILATION_KERNEL_SIZE, DEFAULT_DILATION_KERNEL_SIZE), np.uint8)
output_mask = cv2.dilate(output_mask, kernel, iterations=1)
output_mask = 1 - output_mask
output_mask_binary = output_mask / 255
masked_img_seg = masked_img_seg.astype("uint8")
output_mask = output_mask.astype("uint8")
masked_img = img * output_mask_binary
masked_img_pil = Image.fromarray(masked_img.astype("uint8"))
output_mask_pil = Image.fromarray(output_mask.astype("uint8"))
outputs_gallery = [masked_img_pil, output_mask_pil]
return masked_img_seg, output_mask, outputs_gallery
def get_brush(img):
"""Extract a mask from ImageEditor brush layers or composite/background diff."""
if img is None or not isinstance(img, dict):
return gr.skip(), gr.skip()
layers = img.get("layers", [])
background = img.get('background', None)
composite = img.get('composite', None)
output_mask = None
if layers and layers[0] is not None and background is not None:
output_mask = 255 - np.array(layers[0].convert("RGB")).astype(np.uint8)
elif composite is not None and background is not None:
comp_rgb = np.array(composite.convert("RGB")).astype(np.int16)
bg_rgb = np.array(background.convert("RGB")).astype(np.int16)
diff = np.abs(comp_rgb - bg_rgb)
painted = (diff.sum(axis=2) > 0).astype(np.uint8)
output_mask = (1 - painted) * 255
output_mask = np.repeat(output_mask[:, :, None], 3, axis=2).astype(np.uint8)
else:
return gr.skip(), gr.skip()
if len(np.unique(output_mask)) == 1:
return gr.skip(), gr.skip()
img = np.array(background.convert("RGB")).astype(np.uint8)
output_mask_binary = output_mask / 255
masked_img = img * output_mask_binary
masked_img_pil = Image.fromarray(masked_img.astype("uint8"))
output_mask_pil = Image.fromarray(output_mask.astype("uint8"))
mask_gallery = [masked_img_pil, output_mask_pil]
return output_mask, mask_gallery
def random_mask_func(mask, dilation_type='square', dilation_size=20):
"""Utility to dilate/erode/box/ellipse expand a binary mask."""
binary_mask = mask[:,:,0] < 128
if dilation_type == 'square_dilation':
structure = np.ones((dilation_size, dilation_size), dtype=bool)
dilated_mask = binary_dilation(binary_mask, structure=structure)
elif dilation_type == 'square_erosion':
structure = np.ones((dilation_size, dilation_size), dtype=bool)
dilated_mask = binary_erosion(binary_mask, structure=structure)
elif dilation_type == 'bounding_box':
# Find the most left top and left bottom point
rows, cols = np.where(binary_mask)
if len(rows) == 0 or len(cols) == 0:
return mask # return original mask if no valid points
min_row, max_row = np.min(rows), np.max(rows)
min_col, max_col = np.min(cols), np.max(cols)
# Create a bounding box
dilated_mask = np.zeros_like(binary_mask, dtype=bool)
dilated_mask[min_row:max_row + 1, min_col:max_col + 1] = True
elif dilation_type == 'bounding_ellipse':
# Find the most left top and left bottom point
rows, cols = np.where(binary_mask)
if len(rows) == 0 or len(cols) == 0:
return mask # return original mask if no valid points
min_row, max_row = np.min(rows), np.max(rows)
min_col, max_col = np.min(cols), np.max(cols)
# Calculate the center and axis length of the ellipse
center = ((min_col + max_col) // 2, (min_row + max_row) // 2)
a = (max_col - min_col) // 2 # half long axis
b = (max_row - min_row) // 2 # half short axis
# Create a bounding ellipse
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]]
ellipse_mask = ((x - center[0])**2 / a**2 + (y - center[1])**2 / b**2) <= 1
dilated_mask = np.zeros_like(binary_mask, dtype=bool)
dilated_mask[ellipse_mask] = True
else:
raise ValueError("dilation_type must be 'square', 'ellipse', 'bounding_box', or 'bounding_ellipse'")
# Use binary dilation
dilated_mask = 1 - dilated_mask
dilated_mask = np.uint8(dilated_mask[:,:,np.newaxis]) * 255
dilated_mask = np.concatenate([dilated_mask, dilated_mask, dilated_mask], axis=2)
return dilated_mask
def dilate_mask(mask, image):
"""Dilate the target mask for robustness and preview the result."""
if mask is None:
gr.Warning("Please input the target mask first")
return None, None
mask = random_mask_func(mask, dilation_type='square_dilation', dilation_size=DEFAULT_DILATION_KERNEL_SIZE)
masked_img = image * (mask > 0)
return mask, [masked_img, mask]
def erode_mask(mask, image):
"""Erode the target mask and preview the result."""
if mask is None:
gr.Warning("Please input the target mask first")
return None, None
mask = random_mask_func(mask, dilation_type='square_erosion', dilation_size=DEFAULT_DILATION_KERNEL_SIZE)
masked_img = image * (mask > 0)
return mask, [masked_img, mask]
def bounding_box(mask, image):
"""Create bounding box mask and preview the result."""
if mask is None:
gr.Warning("Please input the target mask first")
return None, None
mask = random_mask_func(mask, dilation_type='bounding_box', dilation_size=DEFAULT_DILATION_KERNEL_SIZE)
masked_img = image * (mask > 0)
return mask, [masked_img, mask]
def change_input_mask_mode(input_mask_mode, custmization_mode):
"""Change visibility of input mask mode components."""
if custmization_mode == "Position-free":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
elif input_mask_mode.lower() == "precise mask":
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
)
elif input_mask_mode.lower() == "user-drawn mask":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
else:
gr.Warning("Invalid input mask mode")
return (
gr.skip(), gr.skip(), gr.skip()
)
def change_custmization_mode(custmization_mode, input_mask_mode):
"""Change visibility and interactivity based on customization mode."""
if custmization_mode.lower() == "position-free":
return (gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False),
gr.update(interactive=False, visible=False),
gr.update(value="<s>Select a input mask mode</s>", visible=False),
gr.update(value="<s>Input target image & mask (Iterate clicking or brushing until the target is covered)</s>", visible=False),
gr.update(value="<s>View or modify the target mask</s>", visible=False),
gr.update(value="3\. Input text prompt (necessary)"),
gr.update(value="4\. Submit and view the output"),
gr.update(visible=False),
gr.update(visible=False),
)
else:
if input_mask_mode.lower() == "precise mask":
return (gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=False),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(value="3\. Select a input mask mode", visible=True),
gr.update(value="4\. Input target image & mask (Iterate clicking or brushing until the target is covered)", visible=True),
gr.update(value="6\. View or modify the target mask", visible=True),
gr.update(value="5\. Input text prompt (optional)", visible=True),
gr.update(value="7\. Submit and view the output", visible=True),
gr.update(visible=True, value="Precise mask"),
gr.update(visible=True),
)
elif input_mask_mode.lower() == "user-drawn mask":
return (gr.update(interactive=True, visible=False),
gr.update(interactive=True, visible=True),
gr.update(interactive=False, visible=False),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(interactive=True, visible=True),
gr.update(value="3\. Select a input mask mode", visible=True),
gr.update(value="4\. Input target image & mask (Iterate clicking or brushing until the target is covered)", visible=True),
gr.update(value="6\. View or modify the target mask", visible=True),
gr.update(value="5\. Input text prompt (optional)", visible=True),
gr.update(value="7\. Submit and view the output", visible=True),
gr.update(visible=True, value="User-drawn mask"),
gr.update(visible=True),
)
def change_seg_ref_mode(seg_ref_mode, image_reference_state, move_to_center):
"""Change segmentation reference mode and handle background removal."""
if image_reference_state is None:
gr.Warning("Please upload the reference image first")
return None, None
global BEN2_MODEL
if seg_ref_mode == "Full Ref":
return image_reference_state, None
else:
if BEN2_MODEL is None:
gr.Warning("Please enable ben2 for mask reference first")
return gr.skip(), gr.skip()
image_reference_pil = Image.fromarray(image_reference_state)
image_reference_pil_rmbg = BEN2_MODEL.inference(image_reference_pil, move_to_center=move_to_center)
image_reference_rmbg = np.array(image_reference_pil_rmbg)
return image_reference_rmbg, image_reference_rmbg
def vlm_auto_generate(image_target_state, image_reference_state, mask_target_state,
custmization_mode):
"""Auto-generate prompt using VLM."""
global VLM_PROCESSOR, VLM_MODEL
if custmization_mode == "Position-aware":
if image_target_state is None or mask_target_state is None:
gr.Warning("Please upload the target image and get mask first")
return None
if image_reference_state is None:
gr.Warning("Please upload the reference image first")
return None
if VLM_PROCESSOR is None or VLM_MODEL is None:
gr.Warning("Please enable vlm for prompt first")
return None
messages = construct_vlm_gen_prompt(image_target_state, image_reference_state, mask_target_state, custmization_mode)
output_text = run_vlm(VLM_PROCESSOR, VLM_MODEL, messages, device=device)
return output_text
def vlm_auto_polish(prompt, custmization_mode):
"""Auto-polish prompt using VLM."""
global VLM_PROCESSOR, VLM_MODEL
if prompt is None:
gr.Warning("Please input the text prompt first")
return None
if custmization_mode == "Position-aware":
gr.Warning("Polishing only works in position-free mode")
return prompt
if VLM_PROCESSOR is None or VLM_MODEL is None:
gr.Warning("Please enable vlm for prompt first")
return prompt
messages = construct_vlm_polish_prompt(prompt)
output_text = run_vlm(VLM_PROCESSOR, VLM_MODEL, messages, device=device)
return output_text
def save_results(output_img, image_reference, image_target, mask_target, prompt,
custmization_mode, input_mask_mode, seg_ref_mode, seed, guidance,
num_steps, num_images_per_prompt, use_background_preservation,
background_blend_threshold, true_gs, assets_cache_dir):
"""Save generated results and metadata."""
save_name = datetime.now().strftime(TIMESTAMP_FORMAT)
results = []
for i in range(num_images_per_prompt):
save_dir = os.path.join(assets_cache_dir, save_name)
os.makedirs(save_dir, exist_ok=True)
output_img[i].save(os.path.join(save_dir, f"img_gen_{i}.png"))
image_reference.save(os.path.join(save_dir, f"img_ref_{i}.png"))
image_target.save(os.path.join(save_dir, f"img_target_{i}.png"))
mask_target.save(os.path.join(save_dir, f"mask_target_{i}.png"))
with open(os.path.join(save_dir, f"hyper_params_{i}.json"), "w") as f:
json.dump({
"prompt": prompt,
"custmization_mode": custmization_mode,
"input_mask_mode": input_mask_mode,
"seg_ref_mode": seg_ref_mode,
"seed": seed,
"guidance": guidance,
"num_steps": num_steps,
"num_images_per_prompt": num_images_per_prompt,
"use_background_preservation": use_background_preservation,
"background_blend_threshold": background_blend_threshold,
"true_gs": true_gs,
}, f)
results.append(output_img[i])
return results |