File size: 17,084 Bytes
0da2326
12edc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da2326
 
 
 
12edc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da2326
 
 
12edc27
 
 
 
 
 
 
 
 
 
 
0da2326
 
 
12edc27
 
 
 
 
 
 
 
 
 
 
0da2326
 
 
12edc27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import re
from typing import List, Optional, Union

import PIL
from PIL import Image
from einops import rearrange
from torch import Tensor

import numpy as np
import torch
from safetensors.torch import load_file as load_sft

from diffusers.image_processor import VaeImageProcessor

from ..modules.layers import (
    SingleStreamBlockLoraProcessor,
    DoubleStreamBlockLoraProcessor,
)
from ..pipelines.sampling import denoise, prepare_image_cond, get_noise, get_schedule, prepare, prepare_with_redux, unpack
from ..utils.model_utils import (
    load_ae,
    load_clip,
    load_ic_custom,
    load_t5,
    load_redux,
    resolve_model_path
)


PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
    torch.Tensor,
    List[PIL.Image.Image],
    List[np.ndarray],
    List[torch.Tensor],
]


class ICCustomPipeline:
    def __init__(
        self, 
        clip_path: str = "clip-vit-large-patch14", 
        t5_path: str = "t5-v1_1-xxl", 
        siglip_path: str = "siglip-so400m-patch14-384", 
        ae_path: str = "flux-fill-dev-ae", 
        dit_path: str = "flux-fill-dev-dit", 
        redux_path: str = "flux1-redux-dev", 
        lora_path: str = "dit_lora_0x1561",
        img_txt_in_path: str = "dit_txt_img_in_0x1561",
        boundary_embeddings_path: str = "dit_boundary_embeddings_0x1561",
        task_register_embeddings_path: str = "dit_task_register_embeddings_0x1561",
        network_alpha: int = None,
        double_blocks_idx: str = None,
        single_blocks_idx: str = None,
        device: torch.device = torch.device("cuda"), 
        offload: bool = False,
        weight_dtype: torch.dtype = torch.bfloat16,
        show_progress: bool = False,
        use_flash_attention: bool = False,
    ):
        self.device = device
        self.offload = offload
        self.weight_dtype = weight_dtype
        
        self.clip = load_clip(clip_path, self.device if not offload else "cpu", dtype=self.weight_dtype).eval() 
        self.t5 = load_t5(t5_path, self.device if not offload else "cpu", max_length=512, dtype=self.weight_dtype).eval()

        self.ae = load_ae(ae_path, device="cpu" if offload else self.device).eval()

        self.model = load_ic_custom(dit_path, device="cpu" if offload else self.device, dtype=self.weight_dtype).eval()

        self.image_encoder = load_redux(redux_path, siglip_path, device="cpu" if offload else self.device, dtype=self.weight_dtype).eval()

        self.vae_scale_factor = 8

        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
        self.mask_processor = VaeImageProcessor(resample="nearest", do_normalize=False)

        self.set_lora(lora_path, network_alpha, double_blocks_idx, single_blocks_idx)
        self.set_img_txt_in(img_txt_in_path)
        self.set_boundary_embeddings(boundary_embeddings_path)
        self.set_task_register_embeddings(task_register_embeddings_path)

        self.show_progress = show_progress
        self.use_flash_attention = use_flash_attention


    def set_show_progress(self, show_progress: bool):
        self.show_progress = show_progress

    def set_use_flash_attention(self, use_flash_attention: bool):
        self.use_flash_attention = use_flash_attention

    def set_pipeline_offload(self, offload: bool):
        self.ae = self.ae.to("cpu" if offload else self.device)
        self.model = self.model.to("cpu" if offload else self.device)
        self.image_encoder = self.image_encoder.to("cpu" if offload else self.device)
        self.clip = self.clip.to("cpu" if offload else self.device)
        self.t5 = self.t5.to("cpu" if offload else self.device)
        self.offload = offload

    def set_pipeline_gradient_checkpointing(self, enable: bool):
        def _recursive_set_gradient_checkpointing(module):
            self.model._set_gradient_checkpointing(module, enable)
            for child in module.children():
                _recursive_set_gradient_checkpointing(child)
    
        _recursive_set_gradient_checkpointing(self.model)

    def get_lora_rank(self, weights):
        for k in weights.keys():
            if k.endswith(".down.weight"):
                return weights[k].shape[0]

    def load_model_weights(self, weights: dict, strict: bool = False):
        model_state_dict = self.model.state_dict()
        update_dict = {k: v for k, v in weights.items() if k in model_state_dict}
        missing_keys = [k for k in weights if k not in model_state_dict]
        assert len(missing_keys) == 0, f"Some keys in the file are not found in the model: {missing_keys}"
        self.model.load_state_dict(update_dict, strict=strict)

    def set_lora(
        self, 
        lora_path: str = None, 
        network_alpha: int = None, 
        double_blocks_idx: str = None, 
        single_blocks_idx: str = None,
        ):
        if not os.path.exists(lora_path):
            lora_path = "dit_lora_0x1561"

            
        lora_path = resolve_model_path(
            name=lora_path,
            repo_id_field="repo_id",
            filename_field="filename",
            ckpt_path_field="ckpt_path",
            hf_download=True,
        )

        weights = load_sft(lora_path)
        self.update_model_with_lora(weights, network_alpha, double_blocks_idx, single_blocks_idx)

    def update_model_with_lora(
        self, 
        weights, 
        network_alpha, 
        double_blocks_idx, 
        single_blocks_idx,
        ):
        rank = self.get_lora_rank(weights)
        network_alpha = network_alpha if network_alpha is not None else rank
        lora_attn_procs = {}

        if double_blocks_idx is None:
            double_blocks_idx = []
        else:
            double_blocks_idx = [int(idx) for idx in double_blocks_idx.split(",")]

        if single_blocks_idx is None:
            single_blocks_idx = list(range(38))
        else:
            single_blocks_idx = [int(idx) for idx in single_blocks_idx.split(",")]
            
        for name, attn_processor in self.model.attn_processors.items():
            match = re.search(r'\.(\d+)\.', name)
            if match:
                layer_index = int(match.group(1))

            if name.startswith("double_blocks") and layer_index in double_blocks_idx:
                lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(
                    dim=3072, rank=rank, network_alpha=network_alpha
                )
            elif name.startswith("single_blocks") and layer_index in single_blocks_idx:
                lora_attn_procs[name] = SingleStreamBlockLoraProcessor(
                    dim=3072, rank=rank, network_alpha=network_alpha
                )
            else:
                lora_attn_procs[name] = attn_processor

        self.model.set_attn_processor(lora_attn_procs)

        self.load_model_weights(weights, strict=False)

    def set_img_txt_in(self, img_txt_in_path: str):
        if not os.path.exists(img_txt_in_path):
            img_txt_in_path = "dit_txt_img_in_0x1561"
            
        img_txt_in_path = resolve_model_path(
            name=img_txt_in_path,
            repo_id_field="repo_id",
            filename_field="filename",
            ckpt_path_field="ckpt_path",
            hf_download=True,
        )
        weights = load_sft(img_txt_in_path)
        self.load_model_weights(weights, strict=False)

    def set_boundary_embeddings(self, boundary_embeddings_path: str):
        if not os.path.exists(boundary_embeddings_path):
            boundary_embeddings_path = "dit_boundary_embeddings_0x1561"
            
        boundary_embeddings_path = resolve_model_path(
            name=boundary_embeddings_path,
            repo_id_field="repo_id",
            filename_field="filename",
            ckpt_path_field="ckpt_path",
            hf_download=True,
        )
        weights = load_sft(boundary_embeddings_path)
        self.load_model_weights(weights, strict=False)

    def set_task_register_embeddings(self, task_register_embeddings_path: str):
        if not os.path.exists(task_register_embeddings_path):
            task_register_embeddings_path = "dit_task_register_embeddings_0x1561"
            
        task_register_embeddings_path = resolve_model_path(
            name=task_register_embeddings_path,
            repo_id_field="repo_id",
            filename_field="filename",
            ckpt_path_field="ckpt_path",
            hf_download=True,
        )
        weights = load_sft(task_register_embeddings_path)
        self.load_model_weights(weights, strict=False)

    def offload_model_to_cpu(self, *models):
        for model in models:
            if model is not None:
                model.to("cpu")

    def prepare_image(
        self,
        image,
        device,
        dtype,
        width=None,
        height=None,
    ):
        if isinstance(image, torch.Tensor):
            pass
        else:
            image = self.image_processor.preprocess(image, height=height, width=width)

        image = image.to(device=device, dtype=dtype)
        return image

    def prepare_mask(
        self,
        mask,
        device,
        dtype,
        width: int = None,
        height: int = None,
    ):
        if isinstance(mask, torch.Tensor):
            pass
        else:
            mask = self.mask_processor.preprocess(mask, height=height, width=width)

        mask = mask.to(device=device, dtype=dtype)
        return mask

    def __call__(
        self,
        prompt: Union[str, List[str], None],
        width: int = 512,
        height: int = 512,
        guidance: float = 4,
        num_steps: int = 50,
        seed: int = 123456789,
        true_gs: float = 1,
        neg_prompt: Optional[Union[str, List[str], None]] = None,
        timestep_to_start_cfg: int = 0,
        img_ref: Optional[PipelineImageInput] = None,
        img_target: Optional[PipelineImageInput] = None,
        mask_target: Optional[PipelineImageInput] = None,
        img_ip: Optional[PipelineImageInput] = None,
        cond_w_regions: Optional[Union[List[int], int]] = None,
        mask_type_ids: Optional[Union[Tensor, int]] = None,
        use_background_preservation: bool = False,
        use_progressive_background_preservation: bool = True,
        background_blend_threshold: float = 0.8,
        num_images_per_prompt: int = 1,
        gradio_progress=None,
        ):


        width = 16 * (width // 16)
        height = 16 * (height // 16)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = 1

        img_ref = self.prepare_image(
            img_ref, 
            self.device, 
            self.weight_dtype,
        )
        img_target = self.prepare_image(
            img_target, 
            self.device, 
            self.weight_dtype,
        )
        mask_target = self.prepare_mask(
            mask_target, 
            self.device, 
            self.weight_dtype,
        )
        if num_images_per_prompt > 1:
            mask_type_ids = mask_type_ids.repeat_interleave(num_images_per_prompt, dim=0)

        return self.forward(
            batch_size,
            num_images_per_prompt,
            prompt,
            width,
            height,
            guidance,
            num_steps,
            seed,
            timestep_to_start_cfg=timestep_to_start_cfg,
            true_gs=true_gs,
            neg_prompt=neg_prompt,
            img_ref=img_ref,
            img_target=img_target,
            mask_target=mask_target,
            img_ip=img_ip,
            cond_w_regions=cond_w_regions,
            mask_type_ids=mask_type_ids,
            use_background_preservation=use_background_preservation,
            use_progressive_background_preservation=use_progressive_background_preservation,
            background_blend_threshold=background_blend_threshold,
            gradio_progress=gradio_progress,
        )

    def forward(
        self,
        batch_size,
        num_images_per_prompt,
        prompt,
        width,
        height,
        guidance,
        num_steps,
        seed,
        timestep_to_start_cfg,
        true_gs,
        neg_prompt,
        img_ref,
        img_target,
        mask_target,
        img_ip,
        cond_w_regions,
        mask_type_ids,
        use_background_preservation,
        use_progressive_background_preservation,
        background_blend_threshold,
        gradio_progress=None,
    ):
        has_neg_prompt = neg_prompt is not None 
        do_true_cfg = true_gs > 1 and has_neg_prompt

        x = get_noise(
            batch_size * num_images_per_prompt, height, width, device=self.device,
            dtype=self.weight_dtype, seed=seed
        )
        image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
        timesteps = get_schedule(
            num_steps,
            image_seq_len,
            shift=True,
        )

        with torch.no_grad():
            self.t5, self.clip, self.image_encoder = self.t5.to(self.device), self.clip.to(self.device), self.image_encoder.to(self.device)

            if self.image_encoder is not None:
                inp_cond = prepare_with_redux(t5=self.t5, clip=self.clip, image_encoder=self.image_encoder, img=x, img_ip=img_ip, prompt=prompt, num_images_per_prompt=num_images_per_prompt)
            else:
                inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=prompt, num_images_per_prompt=num_images_per_prompt)


            neg_inp_cond = None
            if do_true_cfg:
                if self.image_encoder is not None:
                    neg_inp_cond = prepare_with_redux(t5=self.t5, clip=self.clip, image_encoder=self.image_encoder, img=x, img_ip=img_ip, prompt=neg_prompt, num_images_per_prompt=num_images_per_prompt)
                else:
                    neg_inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=neg_prompt, num_images_per_prompt=num_images_per_prompt)

            if self.offload:
                self.offload_model_to_cpu(self.t5, self.clip, self.image_encoder)

            self.model = self.model.to(self.device)
            self.ae.encoder = self.ae.encoder.to(self.device)


            inp_img_cond = prepare_image_cond(
                ae=self.ae,  
                img_ref=img_ref, 
                img_target=img_target,
                mask_target=mask_target,
                dtype=self.weight_dtype,
                device=self.device,
                num_images_per_prompt=num_images_per_prompt,
                )

          
            x = denoise(
                self.model,
                img=inp_cond['img'],
                img_ids=inp_cond['img_ids'],
                txt=inp_cond['txt'],
                txt_ids=inp_cond['txt_ids'],
                txt_vec=inp_cond['txt_vec'],
                timesteps=timesteps,
                guidance=guidance,
                img_cond=inp_img_cond['img_cond'],
                mask_cond=inp_img_cond['mask_cond'],
                img_latent=inp_img_cond['img_latent'],
                cond_w_regions=cond_w_regions,
                mask_type_ids=mask_type_ids,
                height=height,
                width=width,
                use_background_preservation=use_background_preservation,
                use_progressive_background_preservation=use_progressive_background_preservation,
                background_blend_threshold=background_blend_threshold,
                true_gs=true_gs,
                timestep_to_start_cfg=timestep_to_start_cfg,
                neg_txt=neg_inp_cond['txt'] if neg_inp_cond is not None else None,
                neg_txt_ids=neg_inp_cond['txt_ids'] if neg_inp_cond is not None else None,
                neg_txt_vec=neg_inp_cond['txt_vec'] if neg_inp_cond is not None else None,
                show_progress=self.show_progress,
                use_flash_attention=self.use_flash_attention,
                gradio_progress=gradio_progress,
            )

            if self.offload:
                self.offload_model_to_cpu(self.model, self.ae.encoder)

            x = unpack(x.float(), height, width)
            self.ae.decoder = self.ae.decoder.to(x.device)
            x = self.ae.decode(x)

            if self.offload:
                self.offload_model_to_cpu(self.ae.decoder)

        x1 = x.clamp(-1, 1)
        x1 = rearrange(x1, "b c h w -> b h w c")

        output_imgs_target = []
        for i in range(x1.shape[0]):
            output_img = Image.fromarray((127.5 * (x1[i] + 1.0)).cpu().byte().numpy())
            img_target_height, img_target_width = img_target.shape[2], img_target.shape[3]
            output_img_target = output_img.crop((
                output_img.width - img_target_width,
                output_img.height - img_target_height,
                output_img.width,
                output_img.height
            ))
            output_imgs_target.append(output_img_target)

        return output_imgs_target