Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,535 Bytes
12edc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import math
import sys
from typing import Callable, List, Optional, Union
import torch
from einops import rearrange, repeat
from torch import Tensor
from ..models.model import Flux
from ..modules.conditioner import HFEmbedder
from ..modules.image_embedders import ReduxImageEncoder
# -------------------------------------------------------------------------
# Progress bar
# -------------------------------------------------------------------------
import time
TGT_PREFIX = "[TARGET-SCENE]"
def print_progress_bar(iteration, total, prefix='', suffix='', length=30, fill='█'):
"""
Simple progress bar for console output, with elapsed and estimated remaining time.
Args:
iteration: Current iteration (Int)
total: Total iterations (Int)
prefix: Prefix string (Str)
suffix: Suffix string (Str)
length: Bar length (Int)
fill: Bar fill character (Str)
"""
# Static variable to store start time
if not hasattr(print_progress_bar, "_start_time") or iteration == 0:
print_progress_bar._start_time = time.time()
percent = f"{100 * (iteration / float(total)):.1f}%"
filled_length = int(length * iteration // total)
bar = fill * filled_length + '-' * (length - filled_length)
elapsed = time.time() - print_progress_bar._start_time
elapsed_str = time.strftime("%H:%M:%S", time.gmtime(elapsed))
if iteration > 0:
avg_time_per_iter = elapsed / iteration
remaining = avg_time_per_iter * (total - iteration)
else:
remaining = 0
remaining_str = time.strftime("%H:%M:%S", time.gmtime(remaining))
time_info = f"Elapsed: {elapsed_str} | ETA: {remaining_str}"
sys.stdout.write(f'\r{prefix} |{bar}| {percent} {suffix} {time_info}')
sys.stdout.flush()
if iteration == total:
sys.stdout.write('\n')
sys.stdout.flush()
# -------------------------------------------------------------------------
# 1) sampling func
# -------------------------------------------------------------------------
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
):
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
):
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
noise = torch.cat(
[torch.randn(
1,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=device,
dtype=dtype,
generator=torch.Generator(device=device).manual_seed(seed+i),
)
for i in range(num_samples)
],
dim=0
)
return noise
# -------------------------------------------------------------------------
# prepare input func
# -------------------------------------------------------------------------
def _get_batch_size_and_prompt(prompt, img_shape):
"""
Helper to determine batch size and prompt list.
"""
bs, c, h, w = img_shape
is_prompt_none = prompt is None
return bs, prompt, is_prompt_none, h, w
def _make_img_ids(bs, h, w, device=None, dtype=None):
"""
Helper to create image ids tensor.
"""
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 1] = torch.arange(h // 2)[:, None]
img_ids[..., 2] = torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return img_ids
def prepare(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: Union[str, List[str], None],
num_images_per_prompt: int = 1,
):
"""
Prepare the regular input for the Diffusion Transformer.
"""
img_bs, prompt, is_prompt_none, h, w = _get_batch_size_and_prompt(prompt, img.shape)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
img_ids = _make_img_ids(img_bs, h, w, device=img.device, dtype=img.dtype)
if isinstance(prompt, str):
prompt = [prompt]
txt_bs = len(prompt)
if not is_prompt_none:
prompt = [TGT_PREFIX + p for p in prompt]
txt = t5(prompt)
txt_ids = torch.zeros(txt_bs, txt.shape[1], 3, device=img.device, dtype=img.dtype)
txt_vec = clip(prompt)
else:
txt = torch.zeros(txt_bs, 512, 4096, device=img.device, dtype=img.dtype)
txt_ids = torch.zeros(txt_bs, 512, 3, device=img.device, dtype=img.dtype)
txt_vec = torch.zeros(txt_bs, 768, device=img.device, dtype=img.dtype)
if num_images_per_prompt > 1:
txt = txt.repeat_interleave(num_images_per_prompt, dim=0)
txt_ids = txt_ids.repeat_interleave(num_images_per_prompt, dim=0)
txt_vec = txt_vec.repeat_interleave(num_images_per_prompt, dim=0)
return {
"img": img.to(img.device),
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"txt_vec": txt_vec.to(img.device),
}
def prepare_with_redux(
t5: HFEmbedder,
clip: HFEmbedder,
image_encoder: ReduxImageEncoder,
img: Tensor,
img_ip: Tensor,
prompt: Union[str, List[str], None],
num_images_per_prompt: int = 1,
):
img_bs, prompt, is_prompt_none, h, w = _get_batch_size_and_prompt(prompt, img.shape)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
img_ids = _make_img_ids(img_bs, h, w, device=img.device, dtype=img.dtype)
if isinstance(prompt, str):
prompt = [prompt]
txt_bs = len(prompt)
if not is_prompt_none:
prompt = [TGT_PREFIX + p for p in prompt]
txt = torch.cat((t5(prompt), image_encoder(img_ip)), dim=1)
txt_ids = torch.zeros(txt_bs, txt.shape[1], 3, device=img.device, dtype=img.dtype)
txt_vec = clip(prompt)
else:
txt = torch.zeros(txt_bs, 512, 4096, device=img.device, dtype=img.dtype)
txt_ids = torch.zeros(txt_bs, 512, 3, device=img.device, dtype=img.dtype)
txt_vec = torch.zeros(txt_bs, 768, device=img.device, dtype=img.dtype)
if num_images_per_prompt > 1:
txt = txt.repeat_interleave(num_images_per_prompt, dim=0)
txt_ids = txt_ids.repeat_interleave(num_images_per_prompt, dim=0)
txt_vec = txt_vec.repeat_interleave(num_images_per_prompt, dim=0)
return {
"img": img.to(img.device),
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"txt_vec": txt_vec.to(img.device),
}
def prepare_image_cond(
ae,
img_ref,
img_target,
mask_target,
dtype,
device,
num_images_per_prompt: int = 1,
):
batch_size, _, _, _ = img_target.shape
# Apply mask to target image
mask_targeted_img = img_target * mask_target
if mask_target.shape[1] == 3:
mask_target = mask_target[:, 0 : 1, :, :]
with torch.no_grad():
autoencoder_dtype = next(ae.parameters()).dtype
# Encode masked target image to latent space
mask_targeted_latent = ae.encode(mask_targeted_img.to(autoencoder_dtype)).to(dtype)
# Encode reference image to latent space
reference_latent = ae.encode(img_ref.to(autoencoder_dtype)).to(dtype)
# Repeat reference latent if batch size > 1
if reference_latent.shape[0] == 1 and batch_size > 1:
reference_latent = repeat(reference_latent, "1 ... -> bs ...", bs=batch_size)
# Concatenate reference and target latents
latent_concat = torch.cat((reference_latent, mask_targeted_latent), dim=-1)
# Pack latents into 2x2 patches
latent_packed = rearrange(latent_concat, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
# Create reference mask (all ones)
reference_mask = torch.ones_like(img_ref)
if reference_mask.shape[1] == 3:
reference_mask = reference_mask[:, 0 : 1, :, :]
# Concatenate reference and target masks
mask_concat = torch.cat((reference_mask, mask_target), dim=-1)
# Pack masks into 16x16 patches for image conditioning
mask_16x16 = rearrange(mask_concat, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=16, pw=16)
# Interpolate masks to latent space dimensions
mask_latent = torch.nn.functional.interpolate(mask_concat, size=(latent_concat.shape[2] // 2, latent_concat.shape[3] // 2), mode='nearest')
# Pack interpolated masks into 1x1 patches for mask conditioning
mask_cond = rearrange(mask_latent, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=1, pw=1)
# Combine packed latents and masks for image conditioning
img_cond = torch.cat((latent_packed, mask_16x16), dim=-1)
if num_images_per_prompt > 1:
img_cond = img_cond.repeat_interleave(num_images_per_prompt, dim=0)
mask_cond = mask_cond.repeat_interleave(num_images_per_prompt, dim=0)
latent_packed = latent_packed.repeat_interleave(num_images_per_prompt, dim=0)
return {
"img_cond": img_cond.to(device).to(dtype),
"mask_cond": mask_cond.to(device).to(dtype),
"img_latent": latent_packed.to(device).to(dtype),
}
# -------------------------------------------------------------------------
# 2) denoise func
# -------------------------------------------------------------------------
def is_even_step(step: int) -> bool:
"""Check if the current step is odd."""
return (step % 2 == 0)
def denoise(
model,
img,
img_ids,
txt,
txt_ids,
txt_vec,
timesteps,
guidance: float = 4.0,
img_cond: Tensor = None,
mask_cond: Tensor = None,
img_latent: Tensor = None,
cond_w_regions: Optional[Union[List[int], int]] = None,
mask_type_ids: Optional[Union[Tensor, int]] = None,
height: int = 1024,
width: int = 1024,
use_background_preservation: bool = False,
use_progressive_background_preservation: bool = True,
background_blend_threshold: float = 0.8,
true_gs: float = 1,
timestep_to_start_cfg: int = 0,
neg_txt: Tensor = None,
neg_txt_ids: Tensor = None,
neg_txt_vec: Tensor = None,
show_progress: bool = False,
use_flash_attention: bool = False,
gradio_progress=None,
):
do_true_cfg = true_gs > 1 and neg_txt is not None
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
v_gt = img - img_latent
num_steps = len(timesteps[:-1])
for step, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
if show_progress:
print_progress_bar(step, num_steps, prefix='Denoising:', suffix=f'Step {step+1}/{num_steps}')
# Update Gradio progress if available
if gradio_progress is not None:
# Map denoise progress to 0.2-0.8 range (since 0.0-0.2 is preprocessing, 0.8-1.0 is postprocessing)
progress_value = (step / num_steps)
gradio_progress(progress_value, desc=f"Denoising step {step+1}/{num_steps}")
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
model_dtype = list(model.parameters())[0].dtype
pred = model(
img=torch.cat((img.to(model_dtype), img_cond.to(model_dtype)), dim=-1) if img_cond is not None else img.to(model_dtype),
img_ids=img_ids.to(model_dtype),
txt=txt.to(model_dtype),
txt_ids=txt_ids.to(model_dtype),
txt_vec=txt_vec.to(model_dtype),
timesteps=t_vec.to(model_dtype),
guidance=guidance_vec.to(model_dtype),
cond_w_regions=cond_w_regions,
mask_type_ids=mask_type_ids,
height=height,
width=width,
use_flash_attention=use_flash_attention,
)
if do_true_cfg and step >= timestep_to_start_cfg:
neg_perd = model(
img=torch.cat((img.to(model_dtype), img_cond.to(model_dtype)), dim=-1) if img_cond is not None else img.to(model_dtype),
img_ids=img_ids.to(model_dtype),
txt=neg_txt.to(model_dtype),
txt_ids=neg_txt_ids.to(model_dtype),
txt_vec=neg_txt_vec.to(model_dtype),
timesteps=t_vec.to(model_dtype),
guidance=guidance_vec.to(model_dtype),
cond_w_regions=cond_w_regions,
mask_type_ids=mask_type_ids,
height=height,
width=width,
use_flash_attention=use_flash_attention,
)
pred = neg_perd + true_gs * (pred - neg_perd)
if use_background_preservation:
is_early_phase = step <= num_steps * background_blend_threshold
if is_early_phase:
if use_progressive_background_preservation:
if is_even_step(step):
# Apply mask blending on odd steps in early phase
masked_latent = pred * (1 - mask_cond) + v_gt * mask_cond
else:
# Use prediction directly for even steps or late phase
masked_latent = pred
else:
masked_latent = pred * (1 - mask_cond) + v_gt * mask_cond
else:
# Use prediction directly for even steps or late phase
masked_latent = pred
img = img + (t_prev - t_curr) * masked_latent
else:
img = img + (t_prev - t_curr) * pred
if show_progress:
print_progress_bar(num_steps, num_steps, prefix='Denoising:', suffix='Complete')
return img |