Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,921 Bytes
12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 0da2326 12edc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import os
from dataclasses import dataclass
from typing import Union, Optional
import torch
from huggingface_hub import hf_hub_download
from accelerate.logging import get_logger
from accelerate import state
from safetensors import safe_open
from safetensors.torch import load_file as load_sft
from safetensors.torch import save_file as save_sft
from ..models.model import Flux, FluxParams, IC_Custom
from ..modules.autoencoder import AutoEncoder, AutoEncoderParams
from ..modules.conditioner import HFEmbedder
from ..modules.image_embedders import ReduxImageEncoder
from .process_util import print_load_warning
# Initialize logger with a try-except to handle cases where accelerate state isn't initialized
if state.is_initialized():
logger = get_logger(__name__, log_level="INFO")
else:
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# -------------------------------------------------------------------------
# 1) model definition
# -------------------------------------------------------------------------
DIT_PARAMS = FluxParams(
in_channels=384,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
)
AE_PARAMS = AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
)
@dataclass
class HFModelSpec:
repo_id: str
filename: Optional[str] = None
ckpt_path: Optional[str] = None
configs = {
"flux-fill-dev-dit": HFModelSpec(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
filename="flux1-fill-dev.safetensors",
ckpt_path=os.getenv("FLUX_DEV_FILL"),
),
"flux-fill-dev-ae": HFModelSpec(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
filename="ae.safetensors",
ckpt_path=os.getenv("AE"),
),
"t5-v1_1-xxl": HFModelSpec(
repo_id="DeepFloyd/t5-v1_1-xxl",
ckpt_path=os.getenv("T5_XXL"),
),
"clip-vit-large-patch14": HFModelSpec(
repo_id="openai/clip-vit-large-patch14",
ckpt_path=os.getenv("CLIP_VIT_LARGE_PATCH14"),
),
"siglip-so400m-patch14-384": HFModelSpec(
repo_id="google/siglip-so400m-patch14-384",
ckpt_path=os.getenv("SIGLIP_SO400M_PATCH14_384"),
),
"flux1-redux-dev": HFModelSpec(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
ckpt_path=os.getenv("FLUX1_REDUX_DEV"),
),
"dit_lora_0x1561": HFModelSpec(
repo_id="TencentARC/IC-Custom",
filename="dit_lora_0x1561.safetensors",
ckpt_path=os.getenv("DIT_LORA"),
),
"dit_txt_img_in_0x1561": HFModelSpec(
repo_id="TencentARC/IC-Custom",
filename="dit_txt_img_in_0x1561.safetensors",
ckpt_path=os.getenv("DIT_TXT_IMG_IN"),
),
"dit_boundary_embeddings_0x1561": HFModelSpec(
repo_id="TencentARC/IC-Custom",
filename="dit_boundary_embeddings_0x1561.safetensors",
ckpt_path=os.getenv("DIT_BOUNDARY_EMBEDDINGS"),
),
"dit_task_register_embeddings_0x1561": HFModelSpec(
repo_id="TencentARC/IC-Custom",
filename="dit_task_register_embeddings_0x1561.safetensors",
ckpt_path=os.getenv("DIT_TASK_REGISTER_EMBEDDINGS"),
)
}
# -------------------------------------------------------------------------
# 2) load model func
# -------------------------------------------------------------------------
def resolve_model_path(
name: str,
repo_id_field: str = "repo_id",
filename_field: str = "filename",
ckpt_path_field: str = "ckpt_path",
hf_download: bool = True,
) -> str:
"""
Resolve a model path from name, handling local paths, config paths, and HF downloads.
Args:
name: Model name or path
repo_id_field: Field name in configs for repo_id
filename_field: Field name in configs for filename (if download needed)
ckpt_path_field: Field name in configs for checkpoint path
hf_download: Whether to download from HF if not found locally
replace_suffix: Whether to replace suffix in filename
suffix_map: Mapping of suffixes to replace
Explanation:
1) Resolve from CLI
2) Resolve from ENV
3) Resolve from online HF
Returns:
Resolved path to the model
"""
# If it's a direct path, return it
if os.path.exists(name):
return name
# Try to get from configs
if name in configs:
# Get local path from configs
path = getattr(configs[name], ckpt_path_field)
# If local path exists, use it
if path is not None and os.path.exists(path):
return path
# If download is allowed and we have repo info
if (hf_download and
hasattr(configs[name], repo_id_field) and
getattr(configs[name], repo_id_field) is not None):
# If we need a specific file (not just the repo)
if filename_field and hasattr(configs[name], filename_field):
filename = getattr(configs[name], filename_field)
# Download the file
logger.info(f"Downloading {getattr(configs[name], repo_id_field)}/{filename}")
return hf_hub_download(
getattr(configs[name], repo_id_field),
filename,
)
# If we just need the repo ID
return getattr(configs[name], repo_id_field)
# If all else fails, assume name is the path/repo_id
return name
def load_dit(
name: str,
device: Union[str, torch.device] = "cuda",
dtype: torch.dtype = torch.bfloat16,
):
"""
Load a Flux model.
Args:
name: Model name or path
hf_download: Whether to download from HF if not found locally
device: Device to load model on
dtype: Data type for model
Returns:
model: Loaded Flux model
"""
# Loading Flux
if not os.path.exists(name):
name = "flux-fill-dev-dit"
logger.info("Initializing Flux model")
# Resolve checkpoint path
ckpt_path = resolve_model_path(
name=name,
repo_id_field="repo_id",
filename_field="filename",
ckpt_path_field="ckpt_path",
hf_download=True,
)
# Convert device string to torch.device if needed
if isinstance(device, str):
device = torch.device(device)
# Initialize model
with device:
model = Flux(DIT_PARAMS).to(dtype=dtype)
# Load weights
model = load_model_weights(model, ckpt_path, device=device)
return model
def load_ic_custom(
name: str,
device: Union[str, torch.device] = "cuda",
dtype: torch.dtype = torch.bfloat16,
):
"""
Function to load the IC-Custom (FLUX.1-Fill-dev + LoRA weights) model.
Args:
name: Model config name or path
hf_download: Whether to download from HF if not found locally
device: Device to load model on
dtype: Data type for model
Returns:
model: Loaded IC_Custom model
"""
logger.info("Initializing IC-Custom model")
# Resolve checkpoint path
if not os.path.exists(name):
name = "flux-fill-dev-dit"
ckpt_path = resolve_model_path(
name=name,
repo_id_field="repo_id",
filename_field="filename",
ckpt_path_field="ckpt_path",
hf_download=True,
)
# Convert device string to torch.device if needed
if isinstance(device, str):
device = torch.device(device)
# Initialize model on the specified device
with device:
model = IC_Custom(DIT_PARAMS).to(dtype=dtype)
# Load weights
model = load_model_weights(model, ckpt_path, device=device)
return model
def load_embedder(
name: str,
is_clip: bool,
device: Union[str, torch.device],
max_length: int,
dtype: torch.dtype,
) -> HFEmbedder:
"""
Generic function to load an embedder model (T5 or CLIP).
Args:
name: Model name or path
is_clip: Whether this is a CLIP model
device: Device to load model on
max_length: Maximum sequence length
dtype: Data type for model
Returns:
model: Loaded embedder model
"""
# Convert device string to torch.device if needed
if isinstance(device, str):
device = torch.device(device)
# Resolve model path - for embedders we don't need to download specific files,
# just need the repo_id or local path
path = resolve_model_path(
name=name,
repo_id_field="repo_id",
filename_field=None, # No specific file needed
ckpt_path_field="ckpt_path",
hf_download=True, # HFEmbedder handles downloads itself
)
# Initialize and return the model
model = HFEmbedder(
path,
max_length=max_length,
is_clip=is_clip,
).to(device).to(dtype)
return model
def load_t5(
name: str = "t5-v1_1-xxl",
device: Union[str, torch.device] = "cuda",
max_length: int = 512,
dtype: torch.dtype = torch.bfloat16,
) -> HFEmbedder:
"""
Load a T5 text encoder model.
Args:
name: Model name or path
device: Device to load model on
max_length: Maximum sequence length
dtype: Data type for model
Returns:
model: Loaded T5 model
"""
if not os.path.exists(name):
name = "t5-v1_1-xxl"
logger.info(f"Loading T5 model: {name}")
return load_embedder(
name=name,
is_clip=False,
device=device,
max_length=max_length,
dtype=dtype,
)
def load_clip(
name: str = "clip-vit-large-patch14",
device: Union[str, torch.device] = "cuda",
dtype: torch.dtype = torch.bfloat16,
) -> HFEmbedder:
"""
Load a CLIP text encoder model.
Args:
name: Model name or path
device: Device to load model on
dtype: Data type for model
Returns:
model: Loaded CLIP model
"""
if not os.path.exists(name):
name = "clip-vit-large-patch14"
logger.info(f"Loading CLIP model: {name}")
return load_embedder(
name=name,
is_clip=True,
device=device,
max_length=77, # Standard for CLIP
dtype=dtype,
)
def load_ae(
name: str,
device: Union[str, torch.device] = "cuda",
) -> AutoEncoder:
"""
Load an AutoEncoder model.
Args:
name: Model name or path
pretrained_ckpt_path: Path to checkpoint (overrides name)
device: Device to load model on
Returns:
model: Loaded AutoEncoder model
"""
if not os.path.exists(name):
name = "flux-fill-dev-ae"
logger.info(f"Loading AutoEncoder model: {name}")
# Convert device string to torch.device if needed
if isinstance(device, str):
device = torch.device(device)
# Resolve checkpoint path
ckpt_path = resolve_model_path(
name=name,
repo_id_field="repo_id",
filename_field="filename",
ckpt_path_field="ckpt_path",
hf_download=True,
)
# Initialize model
with device:
ae = AutoEncoder(AE_PARAMS)
# Load weights
model = load_model_weights(ae, ckpt_path, device=device, strict=False)
return model
def load_redux(
redux_name: str = "flux1-redux-dev",
siglip_name: str = "siglip-so400m-patch14-384",
device: Union[str, torch.device] = "cuda",
dtype: torch.dtype = torch.bfloat16,
) -> ReduxImageEncoder:
"""
Load a Redux Image Encoder model.
Args:
redux_name: Redux model name or path
siglip_name: SigLIP model name or path
device: Device to load model on
dtype: Data type for model
Returns:
model: Loaded Redux Image Encoder model
"""
if not os.path.exists(redux_name):
redux_name = "flux1-redux-dev"
if not os.path.exists(siglip_name):
siglip_name = "siglip-so400m-patch14-384"
logger.info(f"Loading Redux Image Encoder: redux={redux_name}, siglip={siglip_name}")
# Convert device string to torch.device if needed
if isinstance(device, str):
device = torch.device(device)
# Resolve Redux path
redux_path = resolve_model_path(
name=redux_name,
repo_id_field="repo_id",
filename_field="filename",
ckpt_path_field="ckpt_path",
hf_download=True,
)
# Resolve SigLIP path - for SigLIP we don't need to download specific files,
# just need the repo_id or local path
siglip_path = resolve_model_path(
name=siglip_name,
repo_id_field="repo_id",
filename_field=None, # No specific file needed
ckpt_path_field="ckpt_path",
hf_download=True, # ReduxImageEncoder handles SigLIP downloads itself
)
# Initialize and return the model
with device:
image_encoder = ReduxImageEncoder(
redux_path=redux_path,
siglip_path=siglip_path,
device=device,
).to(dtype=dtype)
return image_encoder
# -------------------------------------------------------------------------
# 3) load and save weights func
# -------------------------------------------------------------------------
def save_lora_weights(model, save_path):
"""
Extracts LoRA weights from the given model and saves them as a safetensors file.
Args:
model (torch.nn.Module): The model containing LoRA weights.
save_path (str): The path to save the safetensors file.
"""
# Collect LoRA weights (commonly containing '_lora' in their names)
lora_state_dict = {}
for name, param in model.state_dict().items():
if '_lora' in name:
lora_state_dict[name] = param.cpu()
if not lora_state_dict:
logger.warning("No LoRA weights found in the model to save.")
save_sft(lora_state_dict, save_path)
logger.info(f"LoRA weights saved to {save_path}")
def save_txt_img_in_weights(model, save_path):
"""
Save the weights and biases of 'txt_in' and 'img_in' layers from the model.
This function extracts parameters whose names are:
- 'txt_in.weight'
- 'txt_in.bias'
- 'img_in.weight'
- 'img_in.bias'
and saves them to a safetensors file.
Args:
model (torch.nn.Module): The model containing the parameters.
save_path (str): The file path to save the extracted weights.
"""
target_keys = ['txt_in.weight', 'txt_in.bias', 'img_in.weight', 'img_in.bias']
selected_state_dict = {}
for name, param in model.state_dict().items():
if name in target_keys:
selected_state_dict[name] = param.cpu()
if not selected_state_dict:
logger.warning("No txt_in/img_in weights or biases found in the model to save.")
save_sft(selected_state_dict, save_path)
logger.info(f"txt_in/img_in weights and biases saved to {save_path}")
def save_task_rigister_embeddings(weights, save_path):
"""
Save the weights and biases of 'mask_type_embedding' layer from the model.
"""
target_keys = ['task_register_embeddings.weight']
selected_state_dict = {}
for name, param in weights.items():
if name in target_keys:
selected_state_dict[name] = param.cpu()
if not selected_state_dict:
logger.warning("No task_register_embeddings weights found in the model to save.")
save_sft(selected_state_dict, save_path)
logger.info(f"task_register_embeddings weights saved to {save_path}")
def save_boundary_embeddings(weights, save_path):
"""
Save the weights and biases of 'boundary_embedding' layer from the model.
"""
target_keys = ['cond_embedding.weight', 'target_embedding.weight', 'idx_embedding.weight']
selected_state_dict = {}
for name, param in weights.items():
if name in target_keys:
selected_state_dict[name] = param.cpu()
if not selected_state_dict:
logger.warning("No boundary_embedding weights found in the model to save.")
save_sft(selected_state_dict, save_path)
logger.info(f"boundary_embedding weights saved to {save_path}")
def load_model_weights(
model,
weights_path,
device=None,
strict=False,
assign=False,
filter_keys=False
):
"""
Unified function to load weights into a model from a safetensors file.
Args:
model (torch.nn.Module): The model to update with weights.
weights_path (str): Path to the safetensors file containing weights.
device (str or torch.device, optional): Device to load weights on. If None, uses CPU.
strict (bool): Whether to strictly enforce that the keys match.
assign (bool): Whether to assign weights (used by some models).
filter_keys (bool): If True, only loads keys that exist in the model.
Returns:
model: The model with weights loaded
"""
if weights_path is None:
logger.info("No weights path provided, skipping weight loading")
return model
logger.info(f"Loading weights from {weights_path}")
# Load the state dict
if device is not None:
# load_sft doesn't support torch.device objects
device_str = str(device) if not isinstance(device, str) else device
state_dict = load_sft(weights_path, device=device_str)
else:
state_dict = load_sft(weights_path)
# Handle different loading strategies
if filter_keys:
# Filter keys to only those in the model
model_state_dict = model.state_dict()
update_dict = {k: v for k, v in state_dict.items() if k in model_state_dict}
missing_keys = [k for k in state_dict if k not in model_state_dict]
if missing_keys:
logger.warning(f"Some keys in the file are not found in the model: {missing_keys}")
missing, unexpected = [], []
model.load_state_dict(update_dict, strict=strict)
else:
# Standard loading
missing, unexpected = model.load_state_dict(state_dict, strict=strict, assign=assign)
# Report any issues with loading
if len(unexpected) > 0:
print_load_warning(unexpected=unexpected)
return model
def load_safetensors(path):
tensors = {}
with safe_open(path, framework="pt", device="cpu") as f:
for key in f.keys():
tensors[key] = f.get_tensor(key)
return tensors
|