import math import torch from einops import rearrange from torch import Tensor # Efficient implementation equivalent to the following: def scaled_dot_product_attention(query, key, value=None, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None, enable_gqa=False, return_qk_logits=False) -> torch.Tensor: L, S = query.size(-2), key.size(-2) scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device) if is_causal: assert attn_mask is None temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(query.dtype) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias = attn_mask + attn_bias if enable_gqa: key = key.repeat_interleave(query.size(-3)//key.size(-3), -3) value = value.repeat_interleave(query.size(-3)//value.size(-3), -3) attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) attn_weight = torch.dropout(attn_weight, dropout_p, train=True) if return_qk_logits: return attn_weight else: return attn_weight @ value def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, task_register_embeddings: Tensor = None, use_flash_attention: bool = False) -> Tensor: q, k = apply_rope(q, k, pe) if task_register_embeddings is not None: k_mask_type_embeds, v_mask_type_embeds = task_register_embeddings[0], task_register_embeddings[1] x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = rearrange(x, "B H L D -> B L (H D)") return x def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim omega = 1.0 / (theta**scale) out = torch.einsum("...n,d->...nd", pos, omega) out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.float() def apply_rope(xq, xk, freqs_cis): xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] if xk is not None: xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] result_q = xq_out.reshape(*xq.shape).type_as(xq) result_k = xk_out.reshape(*xk.shape).type_as(xk) return result_q, result_k else: result_q = xq_out.reshape(*xq.shape).type_as(xq) return result_q, None def apply_learnable_pos_emb(q: Tensor, k: Tensor, embeddings: Tensor) -> Tensor: if embeddings.ndim == 3: embeddings = embeddings.unsqueeze(1) q = q + embeddings k = k + embeddings return q, k