File size: 8,057 Bytes
365de9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
"""
This file consolidates parameters for logging, database connections, model paths, API settings, and security.
"""
# Standard Library Imports
import os
import logging
from datetime import timedelta
from typing import Callable, List, Optional
# Third-Party Library Imports
import torch
from dotenv import load_dotenv
from pathlib import Path
from pydantic import BaseModel, Field, computed_field
from pydantic_settings import BaseSettings
load_dotenv()
BASE_DIR = Path(__file__).resolve().parent.parent
class QdrantSettings(BaseModel):
host: str = Field("localhost", validation_alias="LOCAL_HOST")
port: int = Field(6333, validation_alias="LOCAL_PORT")
class ModelsSettings(BaseModel):
embedder_model: str = "all-MiniLM-L6-v2"
reranker_model: str = "cross-encoder/ms-marco-MiniLM-L6-v2"
class LocalLLMSettings(BaseModel):
model_path_or_repo_id: str = "TheBloke/Mistral-7B-v0.1-GGUF"
model_file: str = "mistral-7b-v0.1.Q5_K_S.gguf"
model_type: str = "mistral"
gpu_layers: Optional[int] = None
threads: int = 8
context_length: int = 4096
mlock: bool = True # Locks the model into RAM to prevent swapping
class GenerationSettings(BaseModel):
last_n_tokens: int = (
128 # The most recent of tokens that will be penalized (if it was repeated)
)
temperature: float = (
0.3 # Controls the randomness of output. Higher value - higher randomness
)
repetition_penalty: float = 1.2
class TextSplitterSettings(BaseModel):
chunk_size: int = 1000 # The maximum size of chunk
chunk_overlap: int = 100
length_function: Callable = len # Function to measure chunk length
is_separator_regex: bool = False
add_start_index: bool = True
class APISettings(BaseModel):
app: str = "app.api.api:api"
host: str = "127.0.0.1"
port: int = 5050
reload: bool = True # The server will reload on system changes
class GeminiSettings(BaseModel):
temperature: float = 0.0
top_p: float = 0.95
top_k: int = 20
candidate_count: int = 1
seed: int = 5
max_output_tokens: int = 1001
stop_sequences: List[str] = Field(default_factory=lambda: ["STOP!"])
presence_penalty: float = 0.0
frequency_penalty: float = 0.0
class GeminiEmbeddingSettings(BaseModel):
output_dimensionality: int = 382
task_type: str = "retrieval_document"
class GeminiWrapperSettings(BaseModel):
temperature: float = 0.0
top_p: float = 0.95
top_k: int = 20
candidate_count: int = 1
seed: int = 5
max_output_tokens: int = 100
stop_sequences: List[str] = Field(default_factory=lambda: ["STOP!"])
presence_penalty: float = 0.0
frequency_penalty: float = 0.0
class PostgresSettings(BaseModel):
url: str = os.environ["DATABASE_URL"]
echo: bool = False
class Settings(BaseSettings):
# model_config = SettingsConfigDict(
# env_file=".env",
# env_file_encoding="utf-8",
# env_nested_delimiter="_",
# extra="ignore"
# )
qdrant: QdrantSettings = Field(default_factory=QdrantSettings)
local_llm: LocalLLMSettings = Field(default_factory=LocalLLMSettings)
models: ModelsSettings = Field(default_factory=ModelsSettings)
local_generation: GenerationSettings = Field(default_factory=GenerationSettings)
text_splitter: TextSplitterSettings = Field(default_factory=TextSplitterSettings)
api: APISettings = Field(default_factory=APISettings)
gemini_generation: GeminiSettings = Field(default_factory=GeminiSettings)
gemini_embedding: GeminiEmbeddingSettings = Field(
default_factory=GeminiEmbeddingSettings
)
gemini_wrapper: GeminiWrapperSettings = Field(
default_factory=GeminiWrapperSettings
)
postgres: PostgresSettings = Field(default_factory=PostgresSettings)
use_gemini: bool = True
max_delta: float = (
0.15 # defines what is the minimum boundary for vectors to be considered similar
)
max_cookie_lifetime: timedelta = timedelta(seconds=3000)
password_reset_token_lifetime: timedelta = timedelta(seconds=3000)
device: str = Field(
default_factory=lambda: "cuda" if torch.cuda.is_available() else "cpu"
)
base_dir: Path = BASE_DIR
stream: bool = True
secret_pepper: str = os.environ["SECRET_PEPPER"]
jwt_algorithm: str = os.environ["JWT_ALGORITHM"].replace("\r", "")
api_key: str = os.environ["GEMINI_API_KEY"]
@computed_field
@property
def get_gpu_layers(self) -> int:
return 20 if self.device == "cuda" else 0
def __init__(self, **kwargs):
super().__init__(**kwargs)
settings = Settings()
logging.basicConfig(
level=logging.INFO,
format="%(levelname)s: %(message)s",
handlers=[logging.StreamHandler()],
)
if __name__ == "__main__":
def bold_text(text: str):
return "\033[1m" + text + "\033[0m"
print(bold_text("--- Successfully loaded settings ---"))
print(f"{bold_text("Base Directory:")} {settings.base_dir}")
print(f"{bold_text("Running on device:")} {settings.device}")
print(f"{bold_text("Qdrant Host:")} {settings.qdrant.host}")
print(f"{bold_text("LLM GPU Layers:")} {settings.local_llm.gpu_layers}")
# model_dump() is useful for debugging or passing to other libraries.
# It safely excludes secret values.
print(bold_text("\n--- Full settings model dump (secrets masked) ---"))
print(settings.model_dump())
print(bold_text("\n--- Secret fields (from .env file) ---"))
print(f"{bold_text("Postgres URL:")} {settings.postgres.url}")
print(f"{bold_text("JWT Algorithm:")} {settings.jwt_algorithm}")
print(f"{bold_text("Secret Pepper:")} {settings.secret_pepper}")
# Corrected line to access the API key
print(f"{bold_text("Gemini API Key:")} {settings.api_key}")
# # Qdrant vector database connection.
# qdrant_client_config = {
# "host": os.getenv("QDRANT_HOST", "localhost"),
# "port": os.getenv("QDRANT_PORT", "6333"),
# }
#
# # Automatically detects CUDA or uses CPU.
# device = "cuda" if torch.cuda.is_available() else 'cpu'
#
# embedder_model = "all-MiniLM-L6-v2"
#
# reranker_model = "cross-encoder/ms-marco-MiniLM-L6-v2"
#
# local_llm_config = {
# "model_path_or_repo_id": "TheBloke/Mistral-7B-v0.1-GGUF",
# "model_file": "mistral-7b-v0.1.Q5_K_S.gguf",
# "model_type": "mistral",
# "gpu_layers": 20 if torch.cuda.is_available() else 0,
# "threads": 8,
# "context_length": 4096, # The maximum context window is 4096 tokens
# "mlock": True, # Locks the model into RAM to prevent swapping
# }
#
# local_generation_config = {
# "last_n_tokens": 128, # The most recent of tokens that will be penalized (if it was repeated)
# "temperature": 0.3, # Controls the randomness of output. Higher value - higher randomness
# "repetition_penalty": 1.2,
# }
#
# text_splitter_config = {
# "chunk_size": 1000, # The maximum size of chunk
# "chunk_overlap": 100,
# "length_function": len, # Function to measure chunk length
# "is_separator_regex": False,
# "add_start_index": True,
# }
#
# # "127.0.0.1"
# api_config = {
# "app": "app.api:api",
# "host": "127.0.0.1",
# "port": 5050,
# "reload": True, # The server will reload on system changes
# }
#
# gemini_generation_config = {
# "temperature": 0, # deterministic, predictable output
# "top_p": 0.95,
# "top_k": 20,
# "candidate_count": 1,
# "seed": 5,
# "max_output_tokens": 1001,
# "stop_sequences": ['STOP!'],
# "presence_penalty": 0.0,
# "frequency_penalty": 0.0,
# }
#
# use_gemini: bool = True
#
# max_delta = 0.15 # defines what is the minimum boundary for vectors to be considered similar
#
# postgres_client_config = {
# "url": os.getenv("POSTGRESQL_DATABASE_URL"),
# "echo": False,
# }
#
# jwt_algorithm = "HS256"
# VERY_SECRET_PEPPER = os.getenv("SECRET_PEPPER")
#
# max_cookie_lifetime = 3000 # in seconds
#
url_user_not_required = ["login", "", "viewer", "message_with_docs", "new_user", "health"]
|