from typing import Any, AsyncGenerator from app.core.models import LocalLLM, Embedder, Reranker, GeminiLLM, GeminiEmbed, Wrapper from app.core.processor import DocumentProcessor from app.core.database import VectorDatabase import time import os from app.settings import settings, BASE_DIR class RagSystem: def __init__(self): self.embedder = ( GeminiEmbed() if settings.use_gemini else Embedder(model=settings.models.embedder_model) ) self.reranker = Reranker(model=settings.models.reranker_model) self.processor = DocumentProcessor(self.embedder) self.db = VectorDatabase(embedder=self.embedder) self.llm = GeminiLLM() if settings.use_gemini else LocalLLM() self.wrapper = Wrapper() """ Provides a prompt with substituted context from chunks TODO: add template to prompt without docs """ def get_general_prompt(self, user_prompt: str, collection_name: str) -> str: enhanced_prompt = self.enhance_prompt(user_prompt.strip()) relevant_chunks = self.db.search(collection_name, query=enhanced_prompt, top_k=30) if relevant_chunks is not None and len(relevant_chunks) > 0: ranks = self.reranker.rank(query=enhanced_prompt, chunks=relevant_chunks)[ : min(5, len(relevant_chunks)) ] relevant_chunks = [relevant_chunks[rank["corpus_id"]] for rank in ranks] else: relevant_chunks = [] sources = "" prompt = "" for chunk in relevant_chunks: citation = ( f"[Source: {chunk.filename}, " f"Page: {chunk.page_number}, " f"Lines: {chunk.start_line}-{chunk.end_line}, " f"Start: {chunk.start_index}]\n\n" ) sources += f"Original text:\n{chunk.get_raw_text()}\nCitation:{citation}" with open( os.path.join(BASE_DIR, "app", "prompt_templates", "test2.txt") ) as prompt_file: prompt = prompt_file.read() prompt += ( "**QUESTION**: " f"{enhanced_prompt}\n" "**CONTEXT DOCUMENTS**:\n" f"{sources}\n" ) print(prompt) return prompt def enhance_prompt(self, original_prompt: str) -> str: path_to_wrapping_prompt = os.path.join(BASE_DIR, "app", "prompt_templates", "wrapper.txt") enhanced_prompt = "" with open(path_to_wrapping_prompt, "r") as f: enhanced_prompt = f.read().replace("[USERS_PROMPT]", original_prompt) return self.wrapper.wrap(enhanced_prompt) """ Splits the list of documents into groups with 'split_by' docs (done to avoid qdrant_client connection error handling), loads them, splits into chunks, and saves to db """ def upload_documents( self, collection_name: str, documents: list[str], split_by: int = 3, debug_mode: bool = True, ) -> None: for i in range(0, len(documents), split_by): if debug_mode: print( "<" + "-" * 10 + "New document group is taken into processing" + "-" * 10 + ">" ) docs = documents[i : i + split_by] loading_time = 0 chunk_generating_time = 0 db_saving_time = 0 print("Start loading the documents") start = time.time() self.processor.load_documents(documents=docs, add_to_unprocessed=True) loading_time = time.time() - start print("Start loading chunk generation") start = time.time() self.processor.generate_chunks() chunk_generating_time = time.time() - start print("Start saving to db") start = time.time() self.db.store(collection_name, self.processor.get_and_save_unsaved_chunks()) db_saving_time = time.time() - start if debug_mode: print( f"loading time = {loading_time}, chunk generation time = {chunk_generating_time}, saving time = {db_saving_time}\n" ) def extract_text(self, response) -> str: text = "" try: text = response.candidates[0].content.parts[0].text except Exception as e: print(e) return text """ Produces answer to user's request. First, finds the most relevant chunks, generates prompt with them, and asks llm """ async def generate_response( self, collection_name: str, user_prompt: str, stream: bool = True ) -> str: general_prompt = self.get_general_prompt( user_prompt=user_prompt, collection_name=collection_name ) return self.llm.get_response(prompt=general_prompt) async def generate_response_stream( self, collection_name: str, user_prompt: str, stream: bool = True ) -> AsyncGenerator[Any, Any]: general_prompt = self.get_general_prompt( user_prompt=user_prompt, collection_name=collection_name ) async for chunk in self.llm.get_streaming_response( prompt=general_prompt, stream=True ): yield self.extract_text(chunk) """ Produces the list of the most relevant chunkВs """ def get_relevant_chunks(self, collection_name: str, query): relevant_chunks = self.db.search(collection_name, query=query, top_k=15) relevant_chunks = [ relevant_chunks[ranked["corpus_id"]] for ranked in self.reranker.rank(query=query, chunks=relevant_chunks) ] return relevant_chunks def create_new_collection(self, collection_name: str) -> None: self.db.create_collection(collection_name) def get_collections_names(self) -> list[str]: return self.db.get_collections()