from app.models import LocalLLM, Embedder, Reranker, Gemini from app.processor import DocumentProcessor from app.database import VectorDatabase import time import os from app.settings import reranker_model, embedder_model, base_path, use_gemini # TODO: write a better prompt # TODO: wrap original(user's) prompt with LLM's one # class RagSystem: def __init__(self): self.embedder = Embedder(model=embedder_model) self.reranker = Reranker(model=reranker_model) self.processor = DocumentProcessor() self.db = VectorDatabase(embedder=self.embedder) self.llm = Gemini() if use_gemini else LocalLLM() ''' Provides a prompt with substituted context from chunks TODO: add template to prompt without docs ''' def get_prompt_template(self, user_prompt: str, chunks: list) -> str: sources = "" prompt = "" for chunk in chunks: citation = (f"[Source: {chunk.filename}, " f"Page: {chunk.page_number}, " f"Lines: {chunk.start_line}-{chunk.end_line}, " f"Start: {chunk.start_index}]\n\n") sources += f"Original text:\n{chunk.get_raw_text()}\nCitation:{citation}" with open(os.path.join(base_path, "prompt_templates", "test2.txt")) as f: prompt = f.read() prompt += ( "**QUESTION**: " f"{user_prompt.strip()}\n" "**CONTEXT DOCUMENTS**:\n" f"{sources}\n" ) return prompt ''' Splits the list of documents into groups with 'split_by' docs (done to avoid qdrant_client connection error handling), loads them, splits into chunks, and saves to db ''' def upload_documents(self, documents: list[str], split_by: int = 3, debug_mode: bool = True) -> None: for i in range(0, len(documents), split_by): if debug_mode: print("<" + "-" * 10 + "New document group is taken into processing" + "-" * 10 + ">") docs = documents[i: i + split_by] loading_time = 0 chunk_generating_time = 0 db_saving_time = 0 print("Start loading the documents") start = time.time() self.processor.load_documents(documents=docs, add_to_unprocessed=True) loading_time = time.time() - start print("Start loading chunk generation") start = time.time() self.processor.generate_chunks() chunk_generating_time = time.time() - start print("Start saving to db") start = time.time() self.db.store(self.processor.get_and_save_unsaved_chunks()) db_saving_time = time.time() - start if debug_mode: print( f"loading time = {loading_time}, chunk generation time = {chunk_generating_time}, saving time = {db_saving_time}\n") ''' Produces answer to user's request. First, finds the most relevant chunks, generates prompt with them, and asks llm ''' def generate_response(self, user_prompt: str) -> str: relevant_chunks = self.db.search(query=user_prompt, top_k=15) relevant_chunks = [relevant_chunks[ranked["corpus_id"]] for ranked in self.reranker.rank(query=user_prompt, chunks=relevant_chunks)[:3]] general_prompt = self.get_prompt_template(user_prompt=user_prompt, chunks=relevant_chunks) return self.llm.get_response(prompt=general_prompt) ''' Produces the list of the most relevant chunkВs ''' def get_relevant_chunks(self, query): relevant_chunks = self.db.search(query=query, top_k=15) relevant_chunks = [relevant_chunks[ranked["corpus_id"]] for ranked in self.reranker.rank(query=query, chunks=relevant_chunks)] return relevant_chunks