Spaces:
Runtime error
Runtime error
| import argparse | |
| import torch | |
| from llava_llama3.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN | |
| from llava_llama3.conversation import conv_templates, SeparatorStyle | |
| from llava_llama3.model.builder import load_pretrained_model | |
| from llava_llama3.utils import disable_torch_init | |
| from llava_llama3.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path | |
| from PIL import Image | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| from transformers import TextStreamer | |
| import base64 | |
| def load_image(image_file): | |
| if isinstance(image_file, str) and (image_file.startswith('http://') or image_file.startswith('https://')): | |
| response = requests.get(image_file) | |
| image = Image.open(BytesIO(response.content)).convert('RGB') | |
| elif isinstance(image_file, bytes): | |
| image = Image.open(BytesIO(image_file)).convert('RGB') | |
| else: | |
| image = Image.open(image_file).convert('RGB') | |
| return image | |
| def chat_llava(args, image_file, text, tokenizer, model, image_processor, context_len, streamer=None): | |
| # Model | |
| disable_torch_init() | |
| conv = conv_templates[args.conv_mode].copy() | |
| roles = conv.roles | |
| inp = text | |
| if image_file is not None: | |
| print(image_file, type(image_file)) | |
| image = load_image(image_file) | |
| print(image, type(image)) | |
| image_size = image.size | |
| image_tensor = process_images([image], image_processor, model.config) | |
| if type(image_tensor) is list: | |
| image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] | |
| else: | |
| image_tensor = image_tensor.to(model.device, dtype=torch.float16) | |
| if model.config.mm_use_im_start_end: | |
| inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp | |
| else: | |
| inp = DEFAULT_IMAGE_TOKEN + '\n' + inp | |
| conv.append_message(conv.roles[0], inp) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=image_tensor, | |
| image_sizes=[image_size], | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| max_new_tokens=args.max_new_tokens, | |
| streamer=streamer, | |
| use_cache=True) | |
| else: | |
| conv.append_message(conv.roles[0], inp) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| input_ids = tokenizer(prompt, return_tensors='pt').input_ids.to(model.device) | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| do_sample=True if args.temperature > 0 else False, | |
| temperature=args.temperature, | |
| max_new_tokens=args.max_new_tokens, | |
| use_cache=True) | |
| outputs = tokenizer.decode(output_ids[0]).strip() | |
| conv.messages[-1][-1] = outputs | |
| # Return the model's output as a string | |
| # return outputs | |
| return outputs.replace('<|end_of_text|>', '\n').lstrip() | |