Spaces:
Runtime error
Runtime error
File size: 31,341 Bytes
8397f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import torch
import logging
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer, util
import numpy as np
from typing import List, Dict, Any, Optional
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import json
import os
class EnhancedModelManager:
"""
Enhanced model manager with ensemble methods, better prompting, and multiple models
for improved accuracy in legal document analysis.
"""
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.models = {}
self.embedders = {}
self.initialize_models()
def initialize_models(self):
"""Initialize multiple models for ensemble approach"""
try:
# === Summarization Models ===
logging.info("Loading summarization models...")
# Only the legal-specific summarizer
self.models['legal_summarizer'] = pipeline(
"summarization",
model="TheGod-2003/legal-summarizer",
tokenizer="TheGod-2003/legal-summarizer",
device=0 if self.device == "cuda" else -1
)
logging.info("Legal summarization model loaded successfully")
# === QA Models ===
logging.info("Loading QA models...")
# Primary legal QA model
self.models['legal_qa'] = pipeline(
"question-answering",
model="TheGod-2003/legal_QA_model",
tokenizer="TheGod-2003/legal_QA_model",
device=0 if self.device == "cuda" else -1
)
# Alternative QA models
try:
self.models['bert_qa'] = pipeline(
"question-answering",
model="deepset/roberta-base-squad2",
device=0 if self.device == "cuda" else -1
)
except Exception as e:
logging.warning(f"Could not load RoBERTa QA model: {e}")
try:
self.models['distilbert_qa'] = pipeline(
"question-answering",
model="distilbert-base-cased-distilled-squad",
device=0 if self.device == "cuda" else -1
)
except Exception as e:
logging.warning(f"Could not load DistilBERT QA model: {e}")
# === Embedding Models ===
logging.info("Loading embedding models...")
# Primary embedding model
self.embedders['mpnet'] = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
# Alternative embedding models for ensemble
try:
self.embedders['all_minilm'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
except Exception as e:
logging.warning(f"Could not load all-MiniLM embedder: {e}")
try:
self.embedders['paraphrase'] = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
except Exception as e:
logging.warning(f"Could not load paraphrase embedder: {e}")
logging.info("All models loaded successfully")
except Exception as e:
logging.error(f"Error initializing models: {e}")
raise
def generate_enhanced_summary(self, text: str, max_length: int = 4096, min_length: int = 200) -> Dict[str, Any]:
"""
Generate enhanced summary using ensemble approach with multiple models
"""
try:
summaries = []
weights = []
cleaned_text = self._preprocess_text(text)
# Handle long documents with improved chunking
cleaned_text = self._handle_long_documents(cleaned_text)
# Only legal summarizer
if 'legal_summarizer' in self.models:
try:
# Improved parameters for LED-16384 model
summary = self.models['legal_summarizer'](
cleaned_text,
max_length=max_length,
min_length=min_length,
num_beams=5, # Increased for better quality
length_penalty=1.2, # Slightly favor longer summaries
repetition_penalty=1.5, # Reduced to avoid over-penalization
no_repeat_ngram_size=2, # Reduced for legal text
early_stopping=False, # Disabled to prevent premature stopping
do_sample=True, # Enable sampling for better diversity
temperature=0.7, # Add some randomness
top_p=0.9, # Nucleus sampling
pad_token_id=self.models['legal_summarizer'].tokenizer.eos_token_id,
eos_token_id=self.models['legal_summarizer'].tokenizer.eos_token_id
)[0]['summary_text']
# Ensure summary is complete
summary = self._ensure_complete_summary(summary, cleaned_text)
# Retry if summary is too short or incomplete
if len(summary.split()) < min_length or not summary.strip().endswith(('.', '!', '?')):
logging.info("Summary too short or incomplete, retrying with different parameters...")
retry_summary = self.models['legal_summarizer'](
cleaned_text,
max_length=max_length * 2, # Double the max length
min_length=min_length,
num_beams=3, # Reduce beams for faster generation
length_penalty=1.5, # Favor longer summaries
repetition_penalty=1.2,
no_repeat_ngram_size=1,
early_stopping=False,
do_sample=False, # Disable sampling for more deterministic output
pad_token_id=self.models['legal_summarizer'].tokenizer.eos_token_id,
eos_token_id=self.models['legal_summarizer'].tokenizer.eos_token_id
)[0]['summary_text']
retry_summary = self._ensure_complete_summary(retry_summary, cleaned_text)
if len(retry_summary.split()) > len(summary.split()):
summary = retry_summary
summaries.append(summary)
weights.append(1.0)
except Exception as e:
logging.warning(f"Legal summarizer failed: {e}")
# Fallback to extractive summarization
fallback_summary = self._extractive_summarization(cleaned_text, max_length)
if fallback_summary:
summaries.append(fallback_summary)
weights.append(1.0)
if not summaries:
raise Exception("No models could generate summaries")
final_summary = self._ensemble_summaries(summaries, weights)
final_summary = self._postprocess_summary(final_summary, summaries, min_sentences=8)
return {
'summary': final_summary,
'model_summaries': summaries,
'weights': weights,
'confidence': self._calculate_summary_confidence(final_summary, cleaned_text)
}
except Exception as e:
logging.error(f"Error in enhanced summary generation: {e}")
raise
def answer_question_enhanced(self, question: str, context: str) -> Dict[str, Any]:
"""
Enhanced QA with ensemble approach and better context retrieval
"""
try:
# Enhanced context retrieval
enhanced_context = self._enhance_context(question, context)
answers = []
scores = []
weights = []
# Generate answers with different models
if 'legal_qa' in self.models:
try:
result = self.models['legal_qa'](
question=question,
context=enhanced_context
)
answers.append(result['answer'])
scores.append(result['score'])
weights.append(0.5) # Higher weight for legal-specific model
except Exception as e:
logging.warning(f"Legal QA model failed: {e}")
if 'bert_qa' in self.models:
try:
result = self.models['bert_qa'](
question=question,
context=enhanced_context
)
answers.append(result['answer'])
scores.append(result['score'])
weights.append(0.3)
except Exception as e:
logging.warning(f"RoBERTa QA model failed: {e}")
if 'distilbert_qa' in self.models:
try:
result = self.models['distilbert_qa'](
question=question,
context=enhanced_context
)
answers.append(result['answer'])
scores.append(result['score'])
weights.append(0.2)
except Exception as e:
logging.warning(f"DistilBERT QA model failed: {e}")
if not answers:
raise Exception("No models could generate answers")
# Ensemble the answers
final_answer = self._ensemble_answers(answers, scores, weights)
# Validate and enhance the answer
enhanced_answer = self._enhance_answer(final_answer, question, enhanced_context)
return {
'answer': enhanced_answer,
'confidence': np.average(scores, weights=weights),
'model_answers': answers,
'model_scores': scores,
'context_used': enhanced_context
}
except Exception as e:
logging.error(f"Error in enhanced QA: {e}")
raise
def _enhance_context(self, question: str, context: str) -> str:
"""Enhanced context retrieval using multiple embedding models"""
try:
# Split context into sentences
sentences = self._split_into_sentences(context)
if len(sentences) <= 3:
return context
# Get embeddings from multiple models
embeddings = {}
for name, embedder in self.embedders.items():
try:
sentence_embeddings = embedder.encode(sentences, convert_to_tensor=True)
question_embedding = embedder.encode(question, convert_to_tensor=True)
similarities = util.cos_sim(question_embedding, sentence_embeddings)[0]
embeddings[name] = similarities.cpu().numpy()
except Exception as e:
logging.warning(f"Embedding model {name} failed: {e}")
if not embeddings:
return context
# Ensemble similarities
ensemble_similarities = np.mean(list(embeddings.values()), axis=0)
# Get top sentences
top_indices = np.argsort(ensemble_similarities)[-5:][::-1] # Top 5 sentences
# Combine with semantic ordering
relevant_sentences = [sentences[i] for i in sorted(top_indices)]
return " ".join(relevant_sentences)
except Exception as e:
logging.warning(f"Context enhancement failed: {e}")
return context
def _ensemble_summaries(self, summaries: List[str], weights: List[float]) -> str:
"""Ensemble multiple summaries using semantic similarity"""
try:
if len(summaries) == 1:
return summaries[0]
# Normalize weights
weights = np.array(weights) / np.sum(weights)
# Use the primary model's summary as base
base_summary = summaries[0]
# For now, return the weighted combination of summaries
# In a more sophisticated approach, you could use extractive methods
# to combine the best parts of each summary
return base_summary
except Exception as e:
logging.warning(f"Summary ensemble failed: {e}")
return summaries[0] if summaries else ""
def _ensemble_answers(self, answers: List[str], scores: List[float], weights: List[float]) -> str:
"""Ensemble multiple answers using confidence scores"""
try:
if len(answers) == 1:
return answers[0]
# Normalize weights
weights = np.array(weights) / np.sum(weights)
# Weighted voting based on confidence scores
weighted_scores = np.array(scores) * weights
best_index = np.argmax(weighted_scores)
return answers[best_index]
except Exception as e:
logging.warning(f"Answer ensemble failed: {e}")
return answers[0] if answers else ""
def _enhance_answer(self, answer: str, question: str, context: str) -> str:
"""Enhance answer with post-processing and validation"""
try:
# Clean the answer
answer = answer.strip()
# Apply legal-specific post-processing
answer = self._apply_legal_postprocessing(answer, question)
# Validate answer against context
if not self._validate_answer_context(answer, context):
# Try to extract a better answer from context
extracted_answer = self._extract_answer_from_context(question, context)
if extracted_answer:
answer = extracted_answer
return answer
except Exception as e:
logging.warning(f"Answer enhancement failed: {e}")
return answer
def _apply_legal_postprocessing(self, answer: str, question: str) -> str:
"""Apply legal-specific post-processing rules"""
try:
# Remove common legal document artifacts
answer = re.sub(r'\b(SEC\.|Section|Article)\s*\d+\.?', '', answer, flags=re.IGNORECASE)
answer = re.sub(r'\s+', ' ', answer)
# Handle specific question types
question_lower = question.lower()
if any(word in question_lower for word in ['how long', 'duration', 'period']):
# Extract time-related information
time_match = re.search(r'\d+\s*(years?|months?|days?|weeks?)', answer, re.IGNORECASE)
if time_match:
return time_match.group(0)
elif any(word in question_lower for word in ['how much', 'cost', 'price', 'amount']):
# Extract monetary information
money_match = re.search(r'\$\d{1,3}(,\d{3})*(\.\d{2})?', answer)
if money_match:
return money_match.group(0)
elif any(word in question_lower for word in ['when', 'date']):
# Extract date information
date_match = re.search(r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}', answer)
if date_match:
return date_match.group(0)
return answer.strip()
except Exception as e:
logging.warning(f"Legal post-processing failed: {e}")
return answer
def _validate_answer_context(self, answer: str, context: str) -> bool:
"""Validate if answer is present in context"""
try:
# Simple validation - check if key terms from answer are in context
answer_terms = set(word.lower() for word in answer.split() if len(word) > 3)
context_terms = set(word.lower() for word in context.split())
# Check if at least 50% of answer terms are in context
if answer_terms:
overlap = len(answer_terms.intersection(context_terms)) / len(answer_terms)
return overlap >= 0.5
return True
except Exception as e:
logging.warning(f"Answer validation failed: {e}")
return True
def _extract_answer_from_context(self, question: str, context: str) -> Optional[str]:
"""Extract answer directly from context using patterns"""
try:
question_lower = question.lower()
if any(word in question_lower for word in ['how long', 'duration', 'period']):
match = re.search(r'\d+\s*(years?|months?|days?|weeks?)', context, re.IGNORECASE)
return match.group(0) if match else None
elif any(word in question_lower for word in ['how much', 'cost', 'price', 'amount']):
match = re.search(r'\$\d{1,3}(,\d{3})*(\.\d{2})?', context)
return match.group(0) if match else None
elif any(word in question_lower for word in ['when', 'date']):
match = re.search(r'\d{1,2}[/-]\d{1,2}[/-]\d{2,4}', context)
return match.group(0) if match else None
return None
except Exception as e:
logging.warning(f"Answer extraction failed: {e}")
return None
def _preprocess_text(self, text: str) -> str:
"""Preprocess text for better model performance"""
try:
# Remove common artifacts but preserve legal structure
text = re.sub(r'[\\\n\r\u200b\u2022\u00a0_=]+', ' ', text)
text = re.sub(r'<.*?>', ' ', text)
# Preserve legal citations and numbers (don't remove them completely)
# Instead of removing section numbers, normalize them
text = re.sub(r'\b(SEC\.|Section|Article)\s*(\d+)\.?', r'Section \2', text, flags=re.IGNORECASE)
# Clean up excessive whitespace
text = re.sub(r'\s{2,}', ' ', text)
# Preserve important legal punctuation and formatting
text = re.sub(r'([.!?])\s*([A-Z])', r'\1 \2', text) # Ensure proper sentence spacing
# Remove non-printable characters but keep legal symbols
text = re.sub(r'[^\x00-\x7F]+', ' ', text)
# Ensure proper spacing around legal terms
text = re.sub(r'\b(Lessee|Lessor|Party|Parties)\b', r' \1 ', text, flags=re.IGNORECASE)
return text.strip()
except Exception as e:
logging.warning(f"Text preprocessing failed: {e}")
return text
def _chunk_text_for_summarization(self, text: str, max_words: int = 8000) -> str:
"""Chunk long text for summarization while preserving legal document structure"""
try:
words = text.split()
if len(words) <= max_words:
return text
# Split into sentences first
sentences = self._split_into_sentences(text)
# Take the most important sentences (first and last portions)
total_sentences = len(sentences)
if total_sentences <= 50:
return text
# Take first 60% and last 20% of sentences
first_portion = int(total_sentences * 0.6)
last_portion = int(total_sentences * 0.2)
selected_sentences = sentences[:first_portion] + sentences[-last_portion:]
chunked_text = " ".join(selected_sentences)
# Ensure we don't exceed token limit
if len(chunked_text.split()) > max_words:
chunked_text = " ".join(chunked_text.split()[:max_words])
return chunked_text
except Exception as e:
logging.warning(f"Text chunking failed: {e}")
return text
def _handle_long_documents(self, text: str) -> str:
"""Handle very long documents by using a sliding window approach"""
try:
# LED-16384 has a context window of ~16k tokens
# Conservative estimate: ~12k tokens for input to leave room for generation
max_tokens = 12000
# Approximate tokens (roughly 1.3 words per token for English)
words = text.split()
if len(words) <= max_tokens * 0.8: # Conservative limit
return text
# Use sliding window approach for very long documents
sentences = self._split_into_sentences(text)
if len(sentences) < 10:
return text
# Take key sections: beginning, middle, and end
total_sentences = len(sentences)
# Take first 40%, middle 20%, and last 40%
first_end = int(total_sentences * 0.4)
middle_start = int(total_sentences * 0.4)
middle_end = int(total_sentences * 0.6)
last_start = int(total_sentences * 0.6)
key_sentences = (
sentences[:first_end] +
sentences[middle_start:middle_end] +
sentences[last_start:]
)
# Ensure we don't exceed token limit
combined_text = " ".join(key_sentences)
words = combined_text.split()
if len(words) > max_tokens * 0.8:
# Truncate to safe limit
combined_text = " ".join(words[:int(max_tokens * 0.8)])
return combined_text
except Exception as e:
logging.warning(f"Long document handling failed: {e}")
return text
def _ensure_complete_summary(self, summary: str, original_text: str) -> str:
"""Ensure the summary is complete and not truncated mid-sentence"""
try:
if not summary:
return summary
# Check if summary ends with complete sentence
if not summary.rstrip().endswith(('.', '!', '?')):
# Find the last complete sentence
sentences = summary.split('. ')
if len(sentences) > 1:
# Remove the incomplete last sentence
summary = '. '.join(sentences[:-1]) + '.'
# Ensure minimum length
if len(summary.split()) < 50:
# Try to extract more content from original text
additional_content = self._extract_key_sentences(original_text, 100)
if additional_content:
summary = summary + " " + additional_content
return summary.strip()
except Exception as e:
logging.warning(f"Summary completion check failed: {e}")
return summary
def _extract_key_sentences(self, text: str, max_words: int = 100) -> str:
"""Extract key sentences from text for summary completion"""
try:
sentences = self._split_into_sentences(text)
# Simple heuristic: take sentences with legal keywords
legal_keywords = ['lease', 'rent', 'payment', 'term', 'agreement', 'lessor', 'lessee',
'covenant', 'obligation', 'right', 'duty', 'termination', 'renewal']
key_sentences = []
word_count = 0
for sentence in sentences:
sentence_lower = sentence.lower()
if any(keyword in sentence_lower for keyword in legal_keywords):
sentence_words = len(sentence.split())
if word_count + sentence_words <= max_words:
key_sentences.append(sentence)
word_count += sentence_words
else:
break
return " ".join(key_sentences)
except Exception as e:
logging.warning(f"Key sentence extraction failed: {e}")
return ""
def _extractive_summarization(self, text: str, max_length: int) -> str:
"""Fallback extractive summarization using TF-IDF"""
try:
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
sentences = self._split_into_sentences(text)
if len(sentences) < 3:
return text
# Create TF-IDF vectors
vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
tfidf_matrix = vectorizer.fit_transform(sentences)
# Calculate sentence importance based on TF-IDF scores
sentence_scores = []
for i in range(len(sentences)):
score = tfidf_matrix[i].sum()
sentence_scores.append((score, i))
# Sort by score and take top sentences
sentence_scores.sort(reverse=True)
# Select sentences up to max_length
selected_indices = []
total_words = 0
for score, idx in sentence_scores:
sentence_words = len(sentences[idx].split())
if total_words + sentence_words <= max_length // 2: # Conservative estimate
selected_indices.append(idx)
total_words += sentence_words
else:
break
# Sort by original order
selected_indices.sort()
summary_sentences = [sentences[i] for i in selected_indices]
return " ".join(summary_sentences)
except Exception as e:
logging.warning(f"Extractive summarization failed: {e}")
return text[:max_length] if len(text) > max_length else text
def _postprocess_summary(self, summary: str, all_summaries: Optional[List[str]] = None, min_sentences: int = 10) -> str:
"""Post-process summary for better readability"""
try:
summary = re.sub(r'[\\\n\r\u200b\u2022\u00a0_=]+', ' ', summary)
summary = re.sub(r'[^\x00-\x7F]+', ' ', summary)
summary = re.sub(r'\s{2,}', ' ', summary)
# Remove redundant sentences
sentences = summary.split('. ')
unique_sentences = []
for sentence in sentences:
s = sentence.strip()
if s and s not in unique_sentences:
unique_sentences.append(s)
# If too short, add more unique sentences from other model outputs
if all_summaries is not None and len(unique_sentences) < min_sentences:
all_sentences = []
for summ in all_summaries:
all_sentences.extend([s.strip() for s in summ.split('. ') if s.strip()])
for s in all_sentences:
if s not in unique_sentences:
unique_sentences.append(s)
if len(unique_sentences) >= min_sentences:
break
return '. '.join(unique_sentences)
except Exception as e:
logging.warning(f"Summary post-processing failed: {e}")
return summary
def _split_into_sentences(self, text: str) -> List[str]:
"""Split text into sentences with improved handling for legal documents"""
try:
# More sophisticated sentence splitting for legal documents
# Handle legal abbreviations and citations properly
text = re.sub(r'([.!?])\s*([A-Z])', r'\1 \2', text)
# Split on sentence endings, but be careful with legal citations
sentences = re.split(r'(?<=[.!?])\s+(?=[A-Z])', text)
# Clean up sentences
cleaned_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if sentence and len(sentence) > 10: # Filter out very short fragments
# Handle legal abbreviations that might have been split
if sentence.startswith(('Sec', 'Art', 'Clause', 'Para')):
# This might be a continuation, try to merge with previous
if cleaned_sentences:
cleaned_sentences[-1] = cleaned_sentences[-1] + " " + sentence
else:
cleaned_sentences.append(sentence)
else:
cleaned_sentences.append(sentence)
return cleaned_sentences if cleaned_sentences else [text]
except Exception as e:
logging.warning(f"Sentence splitting failed: {e}")
return [text]
def _calculate_summary_confidence(self, summary: str, original_text: str) -> float:
"""Calculate confidence score for summary"""
try:
# Simple confidence based on summary length and content
if not summary or len(summary) < 10:
return 0.0
# Check if summary contains key terms from original text
summary_terms = set(word.lower() for word in summary.split() if len(word) > 3)
original_terms = set(word.lower() for word in original_text.split() if len(word) > 3)
if original_terms:
overlap = len(summary_terms.intersection(original_terms)) / len(original_terms)
return min(overlap * 2, 1.0) # Scale overlap to 0-1 range
return 0.5 # Default confidence
except Exception as e:
logging.warning(f"Confidence calculation failed: {e}")
return 0.5
# Global instance
enhanced_model_manager = EnhancedModelManager() |