Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,534 Bytes
723cb3d 836dde3 723cb3d 836dde3 af14831 3d157c8 63eee27 3d157c8 836dde3 346c69d 836dde3 63eee27 81059be 63eee27 f94241a 63eee27 836dde3 3d157c8 836dde3 af14831 3d157c8 ff2a87e 81059be ff2a87e 81059be 3d157c8 836dde3 63eee27 836dde3 3d157c8 836dde3 3d157c8 836dde3 3d157c8 836dde3 346c69d 836dde3 3d157c8 836dde3 3d157c8 836dde3 3d157c8 836dde3 5bb310c 3d157c8 836dde3 346c69d 836dde3 3d157c8 63eee27 836dde3 723cb3d 3d157c8 836dde3 723cb3d 836dde3 3d157c8 836dde3 3d157c8 836dde3 3d157c8 346c69d 63eee27 346c69d 3d157c8 836dde3 3d157c8 836dde3 3d157c8 836dde3 3d157c8 836dde3 3d157c8 836dde3 b2d3523 836dde3 bb422a5 b2d3523 bb422a5 b2d3523 bb422a5 b2d3523 bb422a5 b2d3523 bb422a5 b2d3523 346c69d b2d3523 bb422a5 b2d3523 346c69d 63eee27 1391a9c 63eee27 1391a9c 346c69d f503040 bb422a5 b2d3523 1391a9c 63eee27 f503040 b2d3523 723cb3d 836dde3 341afaa 723cb3d 346c69d 63eee27 ff2a87e 63eee27 ff2a87e 81059be ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 63eee27 ff2a87e 81059be ff2a87e 81059be ff2a87e 81059be ff2a87e 81059be ff2a87e 81059be ff2a87e 63eee27 ff2a87e 81059be 63eee27 e8054e6 01d5ce5 81059be 63eee27 81059be 63eee27 81059be 63eee27 a47122b 63eee27 a47122b 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 ff2a87e 63eee27 81059be 63eee27 ff2a87e 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 81059be 63eee27 f94241a 81059be 836dde3 63eee27 836dde3 81059be 346c69d 836dde3 723cb3d 346c69d 723cb3d 346c69d 723cb3d 836dde3 e8054e6 836dde3 723cb3d 3d157c8 723cb3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import gradio as gr
import torch
import gc
import numpy as np
import random
import os
import tempfile
import soundfile as sf
import time
os.environ['ELASTIC_LOG_LEVEL'] = 'DEBUG'
from transformers import AutoProcessor, pipeline
from elastic_models.transformers import MusicgenForConditionalGeneration
MODEL_CONFIG = {
'cost_per_hour': 1.8, # $1.8 per hour on L40S
'cost_savings_1000h': {
'savings_dollars': 8.4, # $8.4 saved per 1000 hours
'savings_percent': 74.9, # 74.9% savings
'compressed_cost': 2.8, # $2.8 for compressed
'original_cost': 11.3, # $11.3 for original
},
'batch_mode': True,
'batch_size': 2 # Number of variants to generate (2, 4, 6, etc.)
}
original_time_cache = {"original_time": 22.57}
# def set_seed(seed: int = 42):
# random.seed(seed)
# np.random.seed(seed)
# torch.manual_seed(seed)
# torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
def cleanup_gpu():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def cleanup_temp_files():
import glob
import time
temp_dir = tempfile.gettempdir()
cutoff_time = time.time() - 3600
# Clean old generated music files
patterns = [
os.path.join(temp_dir, "tmp*.wav"),
os.path.join(temp_dir, "generated_music_*.wav"),
os.path.join(temp_dir, "musicgen_variant_*.wav")
]
for pattern in patterns:
for temp_file in glob.glob(pattern):
try:
if os.path.getctime(temp_file) < cutoff_time:
os.remove(temp_file)
print(f"[CLEANUP] Removed old temp file: {temp_file}")
except OSError:
pass
_generator = None
_processor = None
_original_generator = None
_original_processor = None
def load_model():
global _generator, _processor
if _generator is None:
print("[MODEL] Starting model initialization...")
cleanup_gpu()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[MODEL] Using device: {device}")
print("[MODEL] Loading processor...")
_processor = AutoProcessor.from_pretrained(
"facebook/musicgen-large"
)
print("[MODEL] Loading model...")
model = MusicgenForConditionalGeneration.from_pretrained(
"facebook/musicgen-large",
torch_dtype=torch.float16,
device=device,
mode="S",
__paged=True,
)
model.eval()
print("[MODEL] Creating pipeline...")
_generator = pipeline(
task="text-to-audio",
model=model,
tokenizer=_processor.tokenizer,
device=device,
)
print("[MODEL] Model initialization completed successfully")
return _generator, _processor
def load_original_model():
global _original_generator, _original_processor
if _original_generator is None:
print("[ORIGINAL MODEL] Starting original model initialization...")
cleanup_gpu()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[ORIGINAL MODEL] Using device: {device}")
print("[ORIGINAL MODEL] Loading processor...")
_original_processor = AutoProcessor.from_pretrained(
"facebook/musicgen-large"
)
from transformers import MusicgenForConditionalGeneration as HFMusicgenForConditionalGeneration
print("[ORIGINAL MODEL] Loading original model...")
model = HFMusicgenForConditionalGeneration.from_pretrained(
"facebook/musicgen-large",
torch_dtype=torch.float16,
).to(device)
model.eval()
print("[ORIGINAL MODEL] Creating pipeline...")
_original_generator = pipeline(
task="text-to-audio",
model=model,
tokenizer=_original_processor.tokenizer,
device=device,
)
print("[ORIGINAL MODEL] Original model initialization completed successfully")
return _original_generator, _original_processor
def calculate_max_tokens(duration_seconds):
token_rate = 50
max_new_tokens = int(duration_seconds * token_rate)
print(f"[MODEL] Duration: {duration_seconds}s -> Tokens: {max_new_tokens} (rate: {token_rate})")
return max_new_tokens
def generate_music(text_prompt, duration=10, guidance_scale=3.0):
try:
generator, processor = load_model()
print(f"[GENERATION] Starting generation...")
print(f"[GENERATION] Prompt: '{text_prompt}'")
print(f"[GENERATION] Duration: {duration}s")
print(f"[GENERATION] Guidance scale: {guidance_scale}")
cleanup_gpu()
import time
# set_seed(42)
print(f"[GENERATION] Using seed: {42}")
max_new_tokens = calculate_max_tokens(duration)
generation_params = {
'do_sample': True,
'guidance_scale': guidance_scale,
'max_new_tokens': max_new_tokens,
'min_new_tokens': max_new_tokens,
'cache_implementation': 'paged',
}
prompts = [text_prompt]
outputs = generator(
prompts,
batch_size=1,
generate_kwargs=generation_params
)
print(f"[GENERATION] Generation completed successfully")
output = outputs[0]
audio_data = output['audio']
sample_rate = output['sampling_rate']
print(f"[GENERATION] Audio shape: {audio_data.shape}")
print(f"[GENERATION] Sample rate: {sample_rate}")
print(f"[GENERATION] Audio dtype: {audio_data.dtype}")
print(f"[GENERATION] Audio is numpy: {type(audio_data)}")
if hasattr(audio_data, 'cpu'):
audio_data = audio_data.cpu().numpy()
print(f"[GENERATION] Audio shape after tensor conversion: {audio_data.shape}")
if len(audio_data.shape) == 3:
audio_data = audio_data[0]
if len(audio_data.shape) == 2:
if audio_data.shape[0] < audio_data.shape[1]:
audio_data = audio_data.T
if audio_data.shape[1] > 1:
audio_data = audio_data[:, 0]
else:
audio_data = audio_data.flatten()
audio_data = audio_data.flatten()
print(f"[GENERATION] Audio shape after flattening: {audio_data.shape}")
max_val = np.max(np.abs(audio_data))
if max_val > 0:
audio_data = audio_data / max_val * 0.95
audio_data = (audio_data * 32767).astype(np.int16)
print(f"[GENERATION] Final audio shape: {audio_data.shape}")
print(f"[GENERATION] Audio range: [{np.min(audio_data)}, {np.max(audio_data)}]")
print(f"[GENERATION] Audio dtype: {audio_data.dtype}")
print(f"[GENERATION] Sample rate: {sample_rate}")
timestamp = int(time.time() * 1000)
temp_filename = f"generated_music_{timestamp}.wav"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
sf.write(temp_path, audio_data, sample_rate)
if os.path.exists(temp_path):
file_size = os.path.getsize(temp_path)
print(f"[GENERATION] Audio saved to: {temp_path}")
print(f"[GENERATION] File size: {file_size} bytes")
# Try returning numpy format instead
print(f"[GENERATION] Returning numpy tuple: ({sample_rate}, audio_array)")
return (sample_rate, audio_data)
else:
print(f"[ERROR] Failed to create audio file: {temp_path}")
return None
except Exception as e:
print(f"[ERROR] Generation failed: {str(e)}")
cleanup_gpu()
return None
def calculate_generation_cost(generation_time_seconds, mode='S'):
hours = generation_time_seconds / 3600
cost_per_hour = MODEL_CONFIG['cost_per_hour']
return hours * cost_per_hour
def calculate_cost_savings(compressed_time, original_time):
compressed_cost = calculate_generation_cost(compressed_time, 'S')
original_cost = calculate_generation_cost(original_time, 'original')
savings = original_cost - compressed_cost
savings_percent = (savings / original_cost * 100) if original_cost > 0 else 0
return {
'compressed_cost': compressed_cost,
'original_cost': original_cost,
'savings': savings,
'savings_percent': savings_percent
}
def get_fixed_savings_message():
config = MODEL_CONFIG['cost_savings_1000h']
return f"π° **Cost Savings for generation batch size 4 on L40S (1000h)**: ${config['savings_dollars']:.1f}" \
f" ({config['savings_percent']:.1f}%) - Compressed: ${config['compressed_cost']:.1f} " \
f"vs Original: ${config['original_cost']:.1f}"
def get_cache_key(prompt, duration, guidance_scale):
return f"{hash(prompt)}_{duration}_{guidance_scale}"
def generate_music_batch(text_prompt, duration=10, guidance_scale=3.0, model_mode="compressed"):
try:
generator, processor = load_model()
model_name = "Compressed (S)"
print(f"[GENERATION] Starting generation using {model_name} model...")
print(f"[GENERATION] Prompt: '{text_prompt}'")
print(f"[GENERATION] Duration: {duration}s")
print(f"[GENERATION] Guidance scale: {guidance_scale}")
print(f"[GENERATION] Batch mode: {MODEL_CONFIG['batch_mode']}")
print(f"[GENERATION] Batch size: {MODEL_CONFIG['batch_size']}")
cleanup_gpu()
# set_seed(42)
print(f"[GENERATION] Using seed: {42}")
max_new_tokens = calculate_max_tokens(duration)
generation_params = {
'do_sample': True,
'guidance_scale': guidance_scale,
'max_new_tokens': max_new_tokens,
'min_new_tokens': max_new_tokens,
'cache_implementation': 'paged',
}
batch_size = MODEL_CONFIG['batch_size'] if MODEL_CONFIG['batch_mode'] else 1
prompts = [text_prompt] * batch_size
start_time = time.time()
outputs = generator(
prompts,
batch_size=batch_size,
generate_kwargs=generation_params
)
generation_time = time.time() - start_time
print(f"[GENERATION] Generation completed in {generation_time:.2f}s")
audio_variants = []
sample_rate = outputs[0]['sampling_rate']
# Create unique timestamp for this generation batch
batch_timestamp = int(time.time() * 1000)
for i, output in enumerate(outputs):
audio_data = output['audio']
print(f"[GENERATION] Processing variant {i + 1} audio shape: {audio_data.shape}")
if hasattr(audio_data, 'cpu'):
audio_data = audio_data.cpu().numpy()
if len(audio_data.shape) == 3:
audio_data = audio_data[0]
if len(audio_data.shape) == 2:
if audio_data.shape[0] < audio_data.shape[1]:
audio_data = audio_data.T
if audio_data.shape[1] > 1:
audio_data = audio_data[:, 0]
else:
audio_data = audio_data.flatten()
audio_data = audio_data.flatten()
max_val = np.max(np.abs(audio_data))
if max_val > 0:
audio_data = audio_data / max_val * 0.95
audio_data = (audio_data * 32767).astype(np.int16)
# Save each variant to a unique temporary file
temp_filename = f"musicgen_variant_{i + 1}_{batch_timestamp}.wav"
temp_path = os.path.join(tempfile.gettempdir(), temp_filename)
sf.write(temp_path, audio_data, sample_rate)
print(f"[GENERATION] Variant {i + 1} saved to: {temp_path}")
print(f"[GENERATION] Variant {i + 1} file size: {os.path.getsize(temp_path)} bytes")
audio_variants.append(temp_path)
print(f"[GENERATION] Variant {i + 1} final shape: {audio_data.shape}")
while len(audio_variants) < 6:
audio_variants.append(None)
variants_text = "audio"
generation_info = f"β
Generated {variants_text} in {generation_time:.2f}s\n"
return audio_variants[0], audio_variants[1], audio_variants[2], audio_variants[3], audio_variants[4], \
audio_variants[5], generation_info
except Exception as e:
print(f"[ERROR] Batch generation failed: {str(e)}")
cleanup_gpu()
error_msg = f"β Generation failed: {str(e)}"
return None, None, None, None, None, None, error_msg
with gr.Blocks(title="MusicGen Large - Music Generation") as demo:
gr.Markdown("# π΅ MusicGen Large Music Generator. 2.3x Accelerated by TheStage ANNA")
gr.Markdown(
f"Generate music from text descriptions using Facebook's MusicGen "
f"Large model accelerated by TheStage for 2.3x faster performance.")
with gr.Column():
text_input = gr.Textbox(
label="Music Description",
placeholder="Enter a description of the music you want to generate",
lines=3,
value="A groovy funk bassline with a tight drum beat"
)
with gr.Row():
duration = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Duration (seconds)"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
generate_btn = gr.Button("π΅ Generate Music", variant="primary", size="lg")
generation_info = gr.Markdown("Ready to generate music with elastic acceleration")
audio_section_title = "### Generated Music"
gr.Markdown(audio_section_title)
actual_outputs = MODEL_CONFIG['batch_size'] if MODEL_CONFIG['batch_mode'] else 1
audio_outputs = []
with gr.Row():
audio_output1 = gr.Audio(label="Variant 1", type="filepath", visible=actual_outputs >= 1)
audio_output2 = gr.Audio(label="Variant 2", type="filepath", visible=actual_outputs >= 2)
audio_outputs.extend([audio_output1, audio_output2])
with gr.Row():
audio_output3 = gr.Audio(label="Variant 3", type="filepath", visible=actual_outputs >= 3)
audio_output4 = gr.Audio(label="Variant 4", type="filepath", visible=actual_outputs >= 4)
audio_outputs.extend([audio_output3, audio_output4])
with gr.Row():
audio_output5 = gr.Audio(label="Variant 5", type="filepath", visible=actual_outputs >= 5)
audio_output6 = gr.Audio(label="Variant 6", type="filepath", visible=actual_outputs >= 6)
audio_outputs.extend([audio_output5, audio_output6])
savings_banner = gr.Markdown(get_fixed_savings_message())
with gr.Accordion("π‘ Tips & Information", open=False):
gr.Markdown(f"""
**Generation Tips:**
- Be specific in your descriptions (e.g., "slow blues guitar with harmonica")
- Higher guidance scale = follows prompt more closely
- Lower guidance scale = more creative/varied results
- Duration is limited to 30 seconds for faster generation
**Performance:**
- Accelerated by TheStage elastic compression
- L40S GPU pricing: $1.8/hour
""")
def generate_simple(text_prompt, duration, guidance_scale):
return generate_music_batch(text_prompt, duration, guidance_scale, "compressed")
generate_btn.click(
fn=generate_simple,
inputs=[text_input, duration, guidance_scale],
outputs=[audio_output1, audio_output2, audio_output3, audio_output4, audio_output5, audio_output6,
generation_info],
show_progress=True
)
gr.Examples(
examples=[
"A groovy funk bassline with a tight drum beat",
"Relaxing acoustic guitar melody",
"Electronic dance music with heavy bass",
"Classical violin concerto",
"Reggae with steel drums and bass",
"Rock ballad with electric guitar solo",
"Jazz piano improvisation with brushed drums",
"Ambient synthwave with retro vibes",
],
inputs=text_input,
label="Example Prompts"
)
gr.Markdown("---")
gr.Markdown("""
<div style="text-align: center; color: #666; font-size: 12px; margin-top: 2rem;">
<strong>Limitations:</strong><br>
β’ The model is not able to generate realistic vocals.<br>
β’ The model has been trained with English descriptions and will not perform as well in other languages.<br>
β’ The model does not perform equally well for all music styles and cultures.<br>
β’ The model sometimes generates end of songs, collapsing to silence.<br>
β’ It is sometimes difficult to assess what types of text descriptions provide the best generations. Prompt engineering may be required to obtain satisfying results.
</div>
""")
if __name__ == "__main__":
cleanup_temp_files()
demo.launch()
|