File size: 15,029 Bytes
daca86f
 
 
 
 
 
 
 
 
 
 
 
8455aa3
daca86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f001c4
 
 
 
 
 
 
 
 
daca86f
5f001c4
daca86f
5f001c4
 
 
 
 
 
 
 
 
 
 
 
daca86f
 
 
 
5f001c4
daca86f
 
 
5f001c4
daca86f
 
 
5f001c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForMultipleChoice, AutoModelForQuestionAnswering
import json
import collections # 如果您的 postprocess_qa_predictions 需要

# 假設 utils_qa.py 在同一目錄下 (或者您需要將其函數複製過來或確保可導入)
# from utils_qa import postprocess_qa_predictions # 您可能需要完整路徑或將其放入 requirements.txt

# --- 模型和分詞器加載 ---
# 建議從 Hugging Face Hub 加載您已經上傳的模型
# 這樣您的 Space 就不需要包含模型文件本身,保持輕量
TOKENIZER_PATH = "bert-base-chinese" # 或者您上傳的分詞器路徑
SELECTOR_MODEL_PATH = "TheWeeeed/chinese-paragraph-selector" # 替換為您上傳的段落選擇模型 ID
QA_MODEL_PATH = "TheWeeeed/chinese-extractive-qa" # 替換為您上傳的答案抽取模型 ID

try:
    tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
    selector_model = AutoModelForMultipleChoice.from_pretrained(SELECTOR_MODEL_PATH)
    qa_model = AutoModelForQuestionAnswering.from_pretrained(QA_MODEL_PATH)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    selector_model.to(device)
    selector_model.eval()
    qa_model.to(device)
    qa_model.eval()
    models_loaded_successfully = True
    print(f"模型和分詞器加載成功,使用設備: {device}")
except Exception as e:
    models_loaded_successfully = False
    error_message = f"加載模型或分詞器時出錯: {e}"
    print(error_message)
    # 在 Gradio 界面中,我們可以顯示這個錯誤信息


# --- 從您的 inference_pipeline.py 中提取並調整以下函數 ---
def select_relevant_paragraph_gradio(question_text, candidate_paragraph_texts_str, model, tokenizer, device, max_seq_len):
    # candidate_paragraph_texts_str 是一個由換行符分隔的字符串
    candidate_paragraph_texts = [p.strip() for p in candidate_paragraph_texts_str.split('\n') if p.strip()]
    if not candidate_paragraph_texts:
        return "請至少提供一個候選段落。", -1

    model.eval()
    inputs_mc = []
    for p_text in candidate_paragraph_texts:
        inputs_mc.append(
            tokenizer(
                question_text, p_text, add_special_tokens=True, max_length=max_seq_len,
                padding="max_length", truncation=True, return_tensors="pt"
            )
        )
    input_ids = torch.stack([inp["input_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
    attention_mask = torch.stack([inp["attention_mask"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
    token_type_ids = None
    if "token_type_ids" in inputs_mc[0]:
        token_type_ids = torch.stack([inp["token_type_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)

    with torch.no_grad():
        if token_type_ids is not None:
            outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
        else:
            outputs = model(input_ids=input_ids, attention_mask=attention_mask)
    predicted_index = torch.argmax(outputs.logits, dim=1).item()
    if predicted_index < len(candidate_paragraph_texts):
        return candidate_paragraph_texts[predicted_index], predicted_index
    else:
        return "段落選擇索引錯誤。", -1


def prepare_features_for_qa_inference_gradio(question_id, question_text, selected_context, tokenizer, max_seq_len, doc_stride):
    # 這個函數需要從您的 inference_pipeline.py 中提取並適當修改
    # 它需要返回一個可以被 QA 模型使用的 Dataset 或 features 列表
    # 簡化版:
    from datasets import Dataset # 需要在 requirements.txt 中

    qa_example_for_processing = {"id": [question_id], "question": [question_text], "context": [selected_context]}
    temp_dataset = Dataset.from_dict(qa_example_for_processing)

    pad_on_right = tokenizer.padding_side == "right"

    qa_features = temp_dataset.map(
        lambda examples: prepare_features_for_qa_inference( # 這是您 inference_pipeline.py 中的函數
            examples, tokenizer, pad_on_right, max_seq_len, doc_stride
        ),
        batched=True,
        remove_columns=temp_dataset.column_names
    )
    return qa_features # 返回 Dataset 對象

# 您 inference_pipeline.py 中的 prepare_features_for_qa_inference 函數需要被複製到這裡
# 或者確保它可以被導入
def prepare_features_for_qa_inference(examples, tokenizer, pad_on_right, max_seq_len, doc_stride):
    examples["question"] = [q.lstrip() if isinstance(q, str) else "" for q in examples["question"]]
    questions = examples["question" if pad_on_right else "context"]
    contexts = examples["context" if pad_on_right else "question"]

    # Ensure questions and contexts are lists of strings, handle None by converting to empty string
    questions = [q if isinstance(q, str) else "" for q in questions]
    contexts = [c if isinstance(c, str) else "" for c in contexts]

    tokenized_output = tokenizer(
        questions,
        contexts,
        truncation="only_second" if pad_on_right else "only_first",
        max_length=max_seq_len,
        stride=doc_stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding="max_length", # This ensures all primary outputs are lists of numbers of fixed length
    )

    # The tokenizer with padding="max_length" should already produce lists of integers
    # for input_ids, attention_mask, token_type_ids.
    # The main risk of 'None' would be if the input strings were so problematic
    # that the tokenizer failed internally in a way not producing standard padded output.
    # However, standard tokenizers are quite robust with empty strings when padding is enabled.

    # Let's directly create the structure we need for the output Dataset.
    # `tokenized_output` is a BatchEncoding (dict-like).
    # If `return_overflowing_tokens=True` and N features are generated from one example,
    # then `tokenized_output['input_ids']` is a list of N lists.

    processed_features = []
    num_generated_features = len(tokenized_output["input_ids"]) # Number of features due to overflow

    # `sample_mapping` maps each generated feature back to its original example index in the input `examples`
    sample_mapping = tokenized_output.pop("overflow_to_sample_mapping", list(range(len(examples["id"]))))


    for i in range(num_generated_features):
        feature = {}
        original_example_index = sample_mapping[i] # Index of the original example this feature came from

        # These should always be lists of integers due to padding="max_length"
        feature["input_ids"] = tokenized_output["input_ids"][i]
        if "attention_mask" in tokenized_output:
            feature["attention_mask"] = tokenized_output["attention_mask"][i]
        if "token_type_ids" in tokenized_output:
            feature["token_type_ids"] = tokenized_output["token_type_ids"][i]
        
        # These might not be strictly needed by the model's forward pass but are used by postprocessing
        feature["example_id"] = examples["id"][original_example_index]
        
        current_offset_mapping = tokenized_output["offset_mapping"][i]
        sequence_ids = tokenized_output.sequence_ids(i) # Pass the index of the feature
        context_idx_in_pair = 1 if pad_on_right else 0
        
        feature["offset_mapping"] = [
            offset if sequence_ids[k] == context_idx_in_pair else None
            for k, offset in enumerate(current_offset_mapping)
        ]
        processed_features.append(feature)

    # The .map function expects a dictionary where keys are column names
    # and values are lists of features for those columns.
    # Since we are processing one original example at a time (batched=True on a Dataset of 1 row),
    # and this one example can produce multiple features, `processed_features` is a list of dicts.
    # We need to return a dictionary of lists.
    if not processed_features: # Should not happen if tokenizer works, but as a safeguard
        # Return structure with empty lists to match expected features by .map()
        # This case indicates an issue with tokenizing the input example.
        logger.error(f"No features generated for example ID {examples['id'][0]}. Input q: {examples['question'][0]}, c: {examples['context'][0]}")
        return {
            "input_ids": [], "token_type_ids": [], "attention_mask": [],
            "offset_mapping": [], "example_id": []
        }

    # Transpose the list of feature dictionaries into a dictionary of feature lists
    # This is what the .map(batched=True) function expects as a return value
    final_batch = {}
    for key in processed_features[0].keys():
        final_batch[key] = [feature[key] for feature in processed_features]
    
    for key_to_check in ["input_ids", "attention_mask", "token_type_ids"]:
        if key_to_check in final_batch:
            for i, lst in enumerate(final_batch[key_to_check]):
                if lst is None:
                    raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表為 None!")
                if any(x is None for x in lst):
                    raise ValueError(f"在 prepare_features_for_qa_inference 中,{key_to_check} 的第 {i} 個特徵列表內部包含 None!內容: {lst[:20]}")
                    
    return final_batch

# postprocess_qa_predictions 函數也需要從 utils_qa.py 複製或導入
# from utils_qa import postprocess_qa_predictions # 確保 utils_qa.py 在 Space 的環境中可用

# --- Gradio 界面函數 ---
def two_stage_qa(question, candidate_paragraphs_str, max_seq_len_mc=512, max_seq_len_qa=384, doc_stride_qa=128, n_best_size=20, max_answer_length=100):
    if not models_loaded_successfully:
        return f"錯誤: {error_message}", "N/A", "N/A"

    if not question.strip() or not candidate_paragraphs_str.strip():
        return "錯誤: 問題和候選段落不能為空。", "N/A", "N/A"

    # 階段一
    selected_paragraph, selected_idx = select_relevant_paragraph_gradio(
        question, candidate_paragraphs_str, selector_model, tokenizer, device, max_seq_len_mc
    )
    if selected_idx == -1: # 段落選擇出錯
        return f"段落選擇出錯: {selected_paragraph}", "N/A", selected_paragraph

    # 階段二
    # 準備 QA 特徵
    qa_features_dataset = prepare_features_for_qa_inference_gradio(
        "temp_id", question, selected_paragraph, tokenizer, max_seq_len_qa, doc_stride_qa
    )

    if len(qa_features_dataset) == 0:
        return "錯誤: 無法為選定段落生成QA特徵 (可能段落太短或內容問題)。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"

    # 創建 DataLoader
    from transformers import default_data_collator # 需要導入
    qa_dataloader = DataLoader(
        qa_features_dataset, collate_fn=default_data_collator, batch_size=8 # batch_size可以小一些
    )

    all_start_logits = []
    all_end_logits = []
    for batch in qa_dataloader:
        batch = {k: v.to(device) for k, v in batch.items()}
        with torch.no_grad():
            outputs_qa = qa_model(**batch)
        all_start_logits.append(outputs_qa.start_logits.cpu().numpy())
        all_end_logits.append(outputs_qa.end_logits.cpu().numpy())

    if not all_start_logits:
         return "錯誤: QA模型沒有產生logits。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"

    start_logits_np = np.concatenate(all_start_logits, axis=0)
    end_logits_np = np.concatenate(all_end_logits, axis=0)

    # 為了 postprocess_qa_predictions,我們需要原始的 example 數據
    # 它期望一個包含 "answers" 字段的 Dataset
    def add_empty_answers(example):
        example["answers"] = {"text": [], "answer_start": []}
        return example

    # temp_dataset 用於 postprocessing
    original_example_for_postproc = {"id": ["temp_id"], "question": [question], "context": [selected_paragraph]}
    original_dataset_for_postproc = Dataset.from_dict(original_example_for_postproc).map(add_empty_answers)


    # 後處理
    # 確保 postprocess_qa_predictions 可用
    predictions_dict = postprocess_qa_predictions(
        examples=original_dataset_for_postproc, # 原始的、包含 context 和空 answers 的 Dataset
        features=qa_features_dataset,      # 包含 offset_mapping 和 example_id 的 Dataset
        predictions=(start_logits_np, end_logits_np),
        version_2_with_negative=False,
        n_best_size=n_best_size,
        max_answer_length=max_answer_length,
        null_score_diff_threshold=0.0,
        output_dir=None,
        prefix="gradio_predict",
        is_world_process_zero=True
    )

    final_answer = predictions_dict.get("temp_id", "未能提取答案。")

    return final_answer, f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", predictions_dict

# --- 創建 Gradio 界面 ---
# 定義預設的問題和段落內容
DEFAULT_QUESTION = "世界最高峰是什麼?"
DEFAULT_PARAGRAPHS = (
    "珠穆朗瑪峰是喜馬拉雅山脈的主峰,位於中國與尼泊爾邊界上,是世界海拔最高的山峰。\n"
    "喬戈里峰,又稱K2,是喀喇崑崙山脈的主峰,海拔8611米,是世界第二高峰,位於中國與巴基斯坦邊界。\n"
    "干城章嘉峰位於喜馬拉雅山脈中段尼泊爾和印度邊界線上,海拔8586米,為世界第三高峰。\n"
    "洛子峰,海拔8516米,為世界第四高峰,位於珠穆朗瑪峰以南約3公里處,同屬喜馬拉雅山脈。"
)

iface = gr.Interface(
    fn=two_stage_qa, # 您的兩階段問答處理函數
    inputs=[
        gr.Textbox(
            lines=2, 
            placeholder="輸入您的問題...", 
            label="問題 (Question)", 
            value=DEFAULT_QUESTION  # <--- 為問題設置預設值
        ),
        gr.Textbox(
            lines=10, 
            placeholder="在此處輸入候選段落,每段一行...", 
            label="候選段落 (Candidate Paragraphs - One per line)", 
            value=DEFAULT_PARAGRAPHS # <--- 為段落設置預設值
        )
    ],
    outputs=[
        gr.Textbox(label="預測答案 (Predicted Answer)"),
        gr.Textbox(label="選中的相關段落 (Selected Relevant Paragraph)"),
        gr.JSON(label="原始預測字典 (Raw Predictions Dict - for debugging)") 
    ],
    title="兩階段中文抽取式問答系統",
    description="輸入一個問題和多個候選段落(每行一個段落)。系統會先選擇最相關的段落,然後從中抽取答案。",
    allow_flagging="never" # 或者您希望的標記設置
)

if __name__ == "__main__":
    if models_loaded_successfully: # 確保模型已加載才啟動
        iface.launch()
    else:
        print(f"Gradio 應用無法啟動,因為模型加載失敗: {error_message if 'error_message' in locals() else '未知錯誤'}")