Spaces:
Running
Running
File size: 27,727 Bytes
daca86f bfd8cb7 daca86f bfd8cb7 43478fe daca86f 8455aa3 daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 43478fe daca86f 2bb107e 4c26b67 43478fe 2bb107e 4c26b67 2bb107e 4c26b67 2bb107e 4c26b67 2bb107e 4c26b67 2bb107e 4c26b67 2bb107e 4c26b67 2bb107e 4c26b67 525e038 4c26b67 daca86f c065a00 4886d7e c065a00 4886d7e 78ded7b 4886d7e 23a0a11 daca86f 23a0a11 daca86f 5f001c4 a30d44b 5f001c4 daca86f 5f001c4 daca86f 5f001c4 daca86f 5f001c4 daca86f 5f001c4 daca86f 5f001c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import gradio as gr
import torch
from torch.utils.data import DataLoader # <--- 新增這一行
from transformers import (
AutoTokenizer,
AutoModelForMultipleChoice,
AutoModelForQuestionAnswering,
default_data_collator # 如果您在 app.py 中也使用它
)
import json
import collections
import numpy as np
from datasets import Dataset
from utils_qa import postprocess_qa_predictions
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, # Or logging.DEBUG for more verbose output
)
# 假設 utils_qa.py 在同一目錄下 (或者您需要將其函數複製過來或確保可導入)
# from utils_qa import postprocess_qa_predictions # 您可能需要完整路徑或將其放入 requirements.txt
# --- 模型和分詞器加載 ---
# 建議從 Hugging Face Hub 加載您已經上傳的模型
# 這樣您的 Space 就不需要包含模型文件本身,保持輕量
TOKENIZER_PATH = "bert-base-chinese" # 或者您上傳的分詞器路徑
SELECTOR_MODEL_PATH = "TheWeeeed/chinese-paragraph-selector" # 替換為您上傳的段落選擇模型 ID
QA_MODEL_PATH = "TheWeeeed/chinese-extractive-qa" # 替換為您上傳的答案抽取模型 ID
try:
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH)
selector_model = AutoModelForMultipleChoice.from_pretrained(SELECTOR_MODEL_PATH)
qa_model = AutoModelForQuestionAnswering.from_pretrained(QA_MODEL_PATH)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
selector_model.to(device)
selector_model.eval()
qa_model.to(device)
qa_model.eval()
models_loaded_successfully = True
print(f"模型和分詞器加載成功,使用設備: {device}")
except Exception as e:
models_loaded_successfully = False
error_message = f"加載模型或分詞器時出錯: {e}"
print(error_message)
# 在 Gradio 界面中,我們可以顯示這個錯誤信息
# --- 從您的 inference_pipeline.py 中提取並調整以下函數 ---
def select_relevant_paragraph_gradio(question_text, candidate_paragraph_texts_str, model, tokenizer, device, max_seq_len):
# candidate_paragraph_texts_str 是一個由換行符分隔的字符串
candidate_paragraph_texts = [p.strip() for p in candidate_paragraph_texts_str.split('\n') if p.strip()]
if not candidate_paragraph_texts:
return "請至少提供一個候選段落。", -1
model.eval()
inputs_mc = []
for p_text in candidate_paragraph_texts:
inputs_mc.append(
tokenizer(
question_text, p_text, add_special_tokens=True, max_length=max_seq_len,
padding="max_length", truncation=True, return_tensors="pt"
)
)
input_ids = torch.stack([inp["input_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
attention_mask = torch.stack([inp["attention_mask"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
token_type_ids = None
if "token_type_ids" in inputs_mc[0]:
token_type_ids = torch.stack([inp["token_type_ids"].squeeze(0) for inp in inputs_mc]).unsqueeze(0).to(device)
with torch.no_grad():
if token_type_ids is not None:
outputs = model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
else:
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
predicted_index = torch.argmax(outputs.logits, dim=1).item()
if predicted_index < len(candidate_paragraph_texts):
return candidate_paragraph_texts[predicted_index], predicted_index
else:
return "段落選擇索引錯誤。", -1
def prepare_features_for_qa_inference_gradio(question_id, question_text, selected_context, tokenizer, max_seq_len, doc_stride):
# 這個函數需要從您的 inference_pipeline.py 中提取並適當修改
# 它需要返回一個可以被 QA 模型使用的 Dataset 或 features 列表
# 簡化版:
from datasets import Dataset # 需要在 requirements.txt 中
qa_example_for_processing = {"id": [question_id], "question": [question_text], "context": [selected_context]}
temp_dataset = Dataset.from_dict(qa_example_for_processing)
pad_on_right = tokenizer.padding_side == "right"
qa_features = temp_dataset.map(
lambda examples: prepare_features_for_qa_inference( # 這是您 inference_pipeline.py 中的函數
examples, tokenizer, pad_on_right, max_seq_len, doc_stride
),
batched=True,
remove_columns=temp_dataset.column_names
)
return qa_features # 返回 Dataset 對象
# 您 inference_pipeline.py 中的 prepare_features_for_qa_inference 函數需要被複製到這裡
# 或者確保它可以被導入
def prepare_features_for_qa_inference(examples, tokenizer, pad_on_right, max_seq_len, doc_stride):
# Initial stripping and assignment
examples["question"] = [q.lstrip() if isinstance(q, str) else "" for q in examples["question"]]
questions_to_tokenize = examples["question" if pad_on_right else "context"]
contexts_to_tokenize = examples["context" if pad_on_right else "question"]
questions_to_tokenize = [q if isinstance(q, str) else "" for q in questions_to_tokenize]
contexts_to_tokenize = [c if isinstance(c, str) else "" for c in contexts_to_tokenize]
# Handle cases where either question or context might be empty after processing
# Tokenizer might handle empty strings, but let's be explicit if one is vital
valid_inputs_for_tokenizer_q = []
valid_inputs_for_tokenizer_c = []
original_indices_for_valid_inputs = []
for i in range(len(questions_to_tokenize)):
q_str = questions_to_tokenize[i]
c_str = contexts_to_tokenize[i]
# Add a basic check: if context is empty, tokenization might be problematic for QA
if q_str.strip() and c_str.strip(): # Ensure both have content after stripping
valid_inputs_for_tokenizer_q.append(q_str)
valid_inputs_for_tokenizer_c.append(c_str)
original_indices_for_valid_inputs.append(i)
else:
logger.warning(f"Skipping tokenization for example index {i} due to empty question or context. Q: '{q_str}', C: '{c_str}'")
if not valid_inputs_for_tokenizer_q: # No valid (q,c) pairs to tokenize
logger.error(f"No valid question/context pairs to tokenize for examples with IDs: {examples.get('id', ['N/A'])}. Returning empty features.")
# Return a structure that .map expects (dictionary of empty lists for all expected keys)
return {key: [] for key in ["input_ids", "attention_mask", "token_type_ids", "example_id", "offset_mapping"]}
tokenized_output = tokenizer(
valid_inputs_for_tokenizer_q,
valid_inputs_for_tokenizer_c,
truncation="only_second" if pad_on_right else "only_first",
max_length=max_seq_len,
stride=doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
# Robustness check and fix for tokenizer outputs
keys_to_fix = ["input_ids", "attention_mask", "token_type_ids"]
pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cls_id = tokenizer.cls_token_id if tokenizer.cls_token_id is not None else 101 # Common default
sep_id = tokenizer.sep_token_id if tokenizer.sep_token_id is not None else 102 # Common default
for key in keys_to_fix:
if key in tokenized_output:
for i in range(len(tokenized_output[key])): # Iterate over each feature's list for this key
feature_list = tokenized_output[key][i]
if feature_list is None: # If the entire list for a feature is None
logger.warning(f"Tokenizer produced None for '{key}' at feature index {i}. Replacing with default.")
if key == "input_ids":
default_seq = [cls_id, sep_id] + [pad_id] * (max_seq_len - 2)
tokenized_output[key][i] = default_seq[:max_seq_len]
elif key == "attention_mask":
default_mask = [1, 1] + [0] * (max_seq_len - 2)
tokenized_output[key][i] = default_mask[:max_seq_len]
elif key == "token_type_ids":
tokenized_output[key][i] = [0] * max_seq_len
elif not all(isinstance(x, int) for x in feature_list): # Check for non-integers (like None)
logger.warning(f"Tokenizer produced non-integers in '{key}' at feature index {i}: {str(feature_list)[:100]}... Fixing.")
default_val = pad_id if key == "input_ids" else 0
tokenized_output[key][i] = [default_val if not isinstance(x, int) else x for x in feature_list]
processed_features = []
num_generated_features = len(tokenized_output["input_ids"])
# sample_mapping from tokenized_output might be incorrect if we filtered inputs
# Reconstruct sample_mapping based on original_indices_for_valid_inputs and overflow
# This part gets tricky if return_overflowing_tokens is True and we filtered.
# For simplicity, let's assume for now that if valid_inputs_for_tokenizer_q is not empty,
# tokenizer works on all of them. The more complex case is if tokenizer itself only processes a subset.
# The `overflow_to_sample_mapping` maps generated features to the indices in the *input to the tokenizer*.
# Our input to tokenizer was `valid_inputs_for_tokenizer_q/c`.
overflow_mapping = tokenized_output.pop("overflow_to_sample_mapping")
for i in range(num_generated_features):
feature = {}
# Map the index from the tokenizer's output (which is based on valid_inputs)
# back to the index in the original `examples` batch.
idx_in_valid_inputs = overflow_mapping[i]
original_example_batch_index = original_indices_for_valid_inputs[idx_in_valid_inputs]
feature["input_ids"] = tokenized_output["input_ids"][i]
if "attention_mask" in tokenized_output:
feature["attention_mask"] = tokenized_output["attention_mask"][i]
if "token_type_ids" in tokenized_output:
feature["token_type_ids"] = tokenized_output["token_type_ids"][i]
feature["example_id"] = examples["id"][original_example_batch_index]
current_offset_mapping = tokenized_output["offset_mapping"][i]
sequence_ids = tokenized_output.sequence_ids(i)
context_idx_in_pair = 1 if pad_on_right else 0
feature["offset_mapping"] = [
offset if sequence_ids is not None and k < len(sequence_ids) and sequence_ids[k] == context_idx_in_pair else None
for k, offset in enumerate(current_offset_mapping)
]
processed_features.append(feature)
final_batch = {}
if not processed_features:
logger.warning(f"在 prepare_features_for_qa_inference 中,由於 tokenizer 沒有為 ID {examples.get('id', ['N/A'])[0]} 生成任何有效特徵 (processed_features 為空), 將返回空的特徵結構。")
# 確保所有期望的鍵都存在,並且值是空列表,以匹配 .map 的期望輸出結構
for key_to_ensure in ['input_ids', 'attention_mask', 'token_type_ids', 'example_id', 'offset_mapping']:
final_batch[key_to_ensure] = []
return final_batch
# 1. 將 processed_features (list of dicts) 轉換為 final_batch (dict of lists)
for key in processed_features[0].keys(): # 假設所有特徵字典有相同的鍵
final_batch[key] = [feature[key] for feature in processed_features]
# 2. 對 final_batch 中需要轉換為張量的字段進行健壯性檢查和修正
keys_to_fix_for_tensor_conversion = ["input_ids", "attention_mask", "token_type_ids"]
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cls_token_id = tokenizer.cls_token_id if tokenizer.cls_token_id is not None else 101
sep_token_id = tokenizer.sep_token_id if tokenizer.sep_token_id is not None else 102
for key_to_fix in keys_to_fix_for_tensor_conversion:
if key_to_fix in final_batch:
# final_batch[key_to_fix] 應該是一個列表的列表,例如 [[ids_for_feature1], [ids_for_feature2], ...]
list_of_feature_sequences = final_batch[key_to_fix]
corrected_list_of_feature_sequences = []
for i, single_feature_sequence in enumerate(list_of_feature_sequences):
current_example_id = final_batch.get("example_id", [f"unknown_example_index_{i}"]*len(list_of_feature_sequences) )[i]
if single_feature_sequence is None:
logger.warning(f"對於樣本 {current_example_id} 的特徵 {i}, 字段 '{key_to_fix}' 的整個序列是 None。將用默認安全序列替換。")
if key_to_fix == "input_ids":
default_seq = [cls_token_id, sep_token_id] + [pad_token_id] * (max_seq_len - 2)
corrected_list_of_feature_sequences.append(default_seq[:max_seq_len])
elif key_to_fix == "attention_mask":
default_mask = [1, 1] + [0] * (max_seq_len - 2)
corrected_list_of_feature_sequences.append(default_mask[:max_seq_len])
elif key_to_fix == "token_type_ids":
corrected_list_of_feature_sequences.append([0] * max_seq_len)
else: # 不應該發生,因為我們只檢查這三個鍵
corrected_list_of_feature_sequences.append([0] * max_seq_len) # 一個備用安全值
elif not all(isinstance(x, int) for x in single_feature_sequence):
logger.warning(f"對於樣本 {current_example_id} 的特徵 {i}, 字段 '{key_to_fix}' 列表內部包含非整數值: {str(single_feature_sequence)[:50]}... 將嘗試修正 None 值。")
default_val_for_element = pad_token_id if key_to_fix == "input_ids" else 0
fixed_sequence = []
for x_val in single_feature_sequence:
if x_val is None: # 如果列表中的某個元素是 None
fixed_sequence.append(default_val_for_element)
elif not isinstance(x_val, int): # 如果不是整數也不是 None (異常情況)
logger.error(f"嚴重錯誤:在 {key_to_fix} 中發現了既不是 int 也不是 None 的值: {x_val} (類型: {type(x_val)})。用默認值替換。")
fixed_sequence.append(default_val_for_element)
else:
fixed_sequence.append(x_val)
corrected_list_of_feature_sequences.append(fixed_sequence)
else:
corrected_list_of_feature_sequences.append(single_feature_sequence) # 列表本身是好的
final_batch[key_to_fix] = corrected_list_of_feature_sequences
# (可選) 添加最終調試打印,檢查修正後的 final_batch
logger.info(f"DEBUG: Final batch being returned by prepare_features_for_qa_inference for example {examples.get('id', ['N/A'])[0]}:")
for key_to_log in ["input_ids", "attention_mask", "token_type_ids"]:
if key_to_log in final_batch:
logger.info(f" {key_to_log}: {str(final_batch[key_to_log])[:200]}...") # 打印部分內容
return final_batch
# postprocess_qa_predictions 函數也需要從 utils_qa.py 複製或導入
# from utils_qa import postprocess_qa_predictions # 確保 utils_qa.py 在 Space 的環境中可用
# --- Gradio 界面函數 ---
def two_stage_qa(question, candidate_paragraphs_str, max_seq_len_mc=512, max_seq_len_qa=384, doc_stride_qa=128, n_best_size=20, max_answer_length=100):
if not models_loaded_successfully:
return f"錯誤: {error_message}", "N/A", "N/A"
if not question.strip() or not candidate_paragraphs_str.strip():
return "錯誤: 問題和候選段落不能為空。", "N/A", "N/A"
# 階段一
selected_paragraph, selected_idx = select_relevant_paragraph_gradio(
question, candidate_paragraphs_str, selector_model, tokenizer, device, max_seq_len_mc
)
if selected_idx == -1: # 段落選擇出錯
return f"段落選擇出錯: {selected_paragraph}", "N/A", selected_paragraph
# 階段二
# 準備 QA 特徵
qa_features_dataset = prepare_features_for_qa_inference_gradio(
"temp_id", question, selected_paragraph, tokenizer, max_seq_len_qa, doc_stride_qa
)
if len(qa_features_dataset) == 0:
return "錯誤: 無法為選定段落生成QA特徵 (可能段落太短或內容問題)。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"
# 為了日誌,我們使用傳入的問題文本作為一個標識(或者您可以生成一個隨機ID)
# 如果您的 qa_features_dataset['example_id'] 包含有意義的ID,也可以從那裡獲取
# 由於您在 prepare_features_for_qa_inference_gradio 中硬編碼了 "temp_id",這裡也用它
log_question_id = "temp_id"
if 'example_id' in qa_features_dataset.features and len(qa_features_dataset) > 0:
log_question_id = qa_features_dataset[0]['example_id'] # 獲取第一個特徵的 example_id
logger.info(f"--- In two_stage_qa, about to create DataLoader for question_id: {log_question_id} ---")
logger.info(f"Number of features in qa_features_dataset: {len(qa_features_dataset)}")
for i in range(len(qa_features_dataset)):
feature_item = qa_features_dataset[i]
logger.info(f" Inspecting feature {i} from qa_features_dataset:")
for key_to_check in ["input_ids", "attention_mask", "token_type_ids"]:
if key_to_check not in feature_item:
logger.error(f" !!!!!! CRITICAL: Key '{key_to_check}' is MISSING in feature {i}! Features: {feature_item.keys()}")
# 這是一個嚴重問題,會導致後續 collate 失敗
return f"錯誤: 特徵準備失敗,缺少 {key_to_check}", "N/A", "N/A"
val_list = feature_item[key_to_check]
if val_list is None:
logger.error(f" !!!!!! CRITICAL: Key '{key_to_check}' in feature {i} is None!")
return f"錯誤: 特徵準備失敗,{key_to_check} 為 None", "N/A", "N/A"
if not isinstance(val_list, list):
logger.error(f" !!!!!! CRITICAL: Key '{key_to_check}' in feature {i} is not a list, but {type(val_list)}!")
return f"錯誤: 特徵準備失敗,{key_to_check} 不是列表", "N/A", "N/A"
if not val_list: # 如果列表為空
logger.warning(f" Feature {i} has an empty list for '{key_to_check}'. This might be okay if handled by collator for padding, but check if intended.")
# 檢查列表內部元素
for elem_idx, elem in enumerate(val_list):
if elem is None:
logger.error(f" !!!!!! CRITICAL: Key '{key_to_check}' in feature {i} contains None at index {elem_idx}!")
return f"錯誤: 特徵準備失敗,{key_to_check} 內部有 None", "N/A", "N/A"
if not isinstance(elem, int):
logger.error(f" !!!!!! CRITICAL: Key '{key_to_check}' in feature {i} contains non-integer {elem} (type: {type(elem)}) at index {elem_idx}!")
return f"錯誤: 特徵準備失敗,{key_to_check} 內部有非整數", "N/A", "N/A"
logger.info(f" Feature {i}, key '{key_to_check}' passed inspection. Length: {len(val_list)}")
model_input_columns = ["input_ids", "attention_mask"]
if "token_type_ids" in qa_features_dataset.features:
model_input_columns.append("token_type_ids")
try:
# 從 qa_features_dataset 中提取需要的列來創建新的 Dataset
# qa_features_dataset 本身就是一個 Dataset 對象
features_for_dataloader = qa_features_dataset.select_columns(model_input_columns)
except Exception as e:
logger.error(f"從 qa_features_dataset 選擇列時出錯: {e}. Features: {qa_features_dataset.features}")
return f"錯誤: 準備模型輸入時出錯 (列選擇)。 Error: {e}", "N/A", "N/A"
logger.info("--- 手動檢查 features_for_dataloader 以模擬 default_data_collator ---")
if len(features_for_dataloader) > 0:
# default_data_collator 會接收一個 features 列表,這裡我們模擬只有一個 feature 的情況
# 因為對於第一個 test_item,qa_features_dataset (以及 features_for_dataloader) 只有一行
# features_list_for_collator 將是 [features_for_dataloader[0]]
# 如果 qa_batch_size > 1 且 features_for_dataloader 行數也 > 1,這裡會更複雜
# 但錯誤發生在第一個批次,所以檢查第一個特徵就夠了。
single_feature_to_collate = features_for_dataloader[0]
keys_to_tensorize_by_collator = ["input_ids", "attention_mask", "token_type_ids"]
for k_collate in keys_to_tensorize_by_collator:
if k_collate in single_feature_to_collate:
value_to_tensorize = single_feature_to_collate[k_collate]
logger.info(f" 準備轉換鍵 '{k_collate}' 的值: {str(value_to_tensorize)[:100]}...") # 打印部分值
if value_to_tensorize is None:
logger.error(f" !!!!!! CRITICAL (Pre-Collate): {k_collate} 的值是 None!")
return f"錯誤: 預整理時發現 {k_collate} 為 None", "N/A", "N/A"
if not isinstance(value_to_tensorize, list):
logger.error(f" !!!!!! CRITICAL (Pre-Collate): {k_collate} 的值不是列表,類型為 {type(value_to_tensorize)}!")
return f"錯誤: 預整理時發現 {k_collate} 不是列表", "N/A", "N/A"
if not value_to_tensorize: # 空列表
logger.warning(f" Pre-Collate: {k_collate} 的值是空列表。")
problem_found_in_list = False
for elem_idx, elem_val in enumerate(value_to_tensorize):
if elem_val is None:
logger.error(f" !!!!!! CRITICAL (Pre-Collate): {k_collate}[{elem_idx}] 是 None!")
problem_found_in_list = True
break
if not isinstance(elem_val, int):
logger.error(f" !!!!!! CRITICAL (Pre-Collate): {k_collate}[{elem_idx}] 不是整數,值: {elem_val}, 類型: {type(elem_val)}!")
problem_found_in_list = True
break
if problem_found_in_list:
return f"錯誤: 預整理時在 {k_collate} 內部發現問題", "N/A", "N/A"
logger.info(f" 鍵 '{k_collate}' 的預整理檢查通過。")
else:
logger.warning(f" 鍵 '{k_collate}' 不在 features_for_dataloader[0] 中。")
else:
logger.error("features_for_dataloader 為空,無法進行手動檢查。")
return "錯誤: features_for_dataloader 為空", "N/A", "N/A"
qa_dataloader = DataLoader(
features_for_dataloader,
collate_fn=default_data_collator,
batch_size=8 # 或者 args.qa_batch_size
)
all_start_logits = []
all_end_logits = []
for batch in qa_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs_qa = qa_model(**batch)
all_start_logits.append(outputs_qa.start_logits.cpu().numpy())
all_end_logits.append(outputs_qa.end_logits.cpu().numpy())
if not all_start_logits:
return "錯誤: QA模型沒有產生logits。", f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", "N/A"
start_logits_np = np.concatenate(all_start_logits, axis=0)
end_logits_np = np.concatenate(all_end_logits, axis=0)
# 為了 postprocess_qa_predictions,我們需要原始的 example 數據
# 它期望一個包含 "answers" 字段的 Dataset
def add_empty_answers(example):
example["answers"] = {"text": [], "answer_start": []}
return example
# temp_dataset 用於 postprocessing
original_example_for_postproc = {"id": ["temp_id"], "question": [question], "context": [selected_paragraph]}
original_dataset_for_postproc = Dataset.from_dict(original_example_for_postproc).map(add_empty_answers)
# 後處理
# 確保 postprocess_qa_predictions 可用
predictions_dict = postprocess_qa_predictions(
examples=original_dataset_for_postproc, # 原始的、包含 context 和空 answers 的 Dataset
features=qa_features_dataset, # 包含 offset_mapping 和 example_id 的 Dataset
predictions=(start_logits_np, end_logits_np),
version_2_with_negative=False,
n_best_size=n_best_size,
max_answer_length=max_answer_length,
null_score_diff_threshold=0.0,
output_dir=None,
prefix="gradio_predict",
)
final_answer = predictions_dict.get("temp_id", "未能提取答案。")
return final_answer, f"選中的段落 (索引 {selected_idx}):\n{selected_paragraph}", predictions_dict
# --- 創建 Gradio 界面 ---
# 定義預設的問題和段落內容
DEFAULT_QUESTION = "世界海拔最高峰是什麼?"
DEFAULT_PARAGRAPHS = (
"珠穆朗瑪峰是喜馬拉雅山脈的主峰,位於中國與尼泊爾邊界上,是世界海拔最高的山峰。\n"
"喬戈里峰,又稱K2,是喀喇崑崙山脈的主峰,海拔8611米,是世界第二高峰,位於中國與巴基斯坦邊界。\n"
"干城章嘉峰位於喜馬拉雅山脈中段尼泊爾和印度邊界線上,海拔8586米,為世界第三高峰。\n"
"洛子峰,海拔8516米,為世界第四高峰,位於珠穆朗瑪峰以南約3公里處,同屬喜馬拉雅山脈。"
)
iface = gr.Interface(
fn=two_stage_qa, # 您的兩階段問答處理函數
inputs=[
gr.Textbox(
lines=2,
placeholder="輸入您的問題...",
label="問題 (Question)",
value=DEFAULT_QUESTION # <--- 為問題設置預設值
),
gr.Textbox(
lines=10,
placeholder="在此處輸入候選段落,每段一行...",
label="候選段落 (Candidate Paragraphs - One per line)",
value=DEFAULT_PARAGRAPHS # <--- 為段落設置預設值
)
],
outputs=[
gr.Textbox(label="預測答案 (Predicted Answer)"),
gr.Textbox(label="選中的相關段落 (Selected Relevant Paragraph)"),
gr.JSON(label="原始預測字典 (Raw Predictions Dict - for debugging)")
],
title="兩階段中文抽取式問答系統",
description="輸入一個問題和多個候選段落(每行一個段落)。系統會先選擇最相關的段落,然後從中抽取答案。",
allow_flagging="never" # 或者您希望的標記設置
)
if __name__ == "__main__":
if models_loaded_successfully: # 確保模型已加載才啟動
iface.launch()
else:
print(f"Gradio 應用無法啟動,因為模型加載失敗: {error_message if 'error_message' in locals() else '未知錯誤'}")
|