Spaces:
Running
Running
Delete utils_qa.py
Browse files- utils_qa.py +0 -443
utils_qa.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Team All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""
|
15 |
-
Post-processing utilities for question answering.
|
16 |
-
"""
|
17 |
-
|
18 |
-
import collections
|
19 |
-
import json
|
20 |
-
import logging
|
21 |
-
import os
|
22 |
-
from typing import Optional
|
23 |
-
|
24 |
-
import numpy as np
|
25 |
-
from tqdm.auto import tqdm
|
26 |
-
|
27 |
-
|
28 |
-
logger = logging.getLogger(__name__)
|
29 |
-
|
30 |
-
|
31 |
-
def postprocess_qa_predictions(
|
32 |
-
examples,
|
33 |
-
features,
|
34 |
-
predictions: tuple[np.ndarray, np.ndarray],
|
35 |
-
version_2_with_negative: bool = False,
|
36 |
-
n_best_size: int = 20,
|
37 |
-
max_answer_length: int = 30,
|
38 |
-
null_score_diff_threshold: float = 0.0,
|
39 |
-
output_dir: Optional[str] = None,
|
40 |
-
prefix: Optional[str] = None,
|
41 |
-
log_level: Optional[int] = logging.WARNING,
|
42 |
-
):
|
43 |
-
"""
|
44 |
-
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
|
45 |
-
original contexts. This is the base postprocessing functions for models that only return start and end logits.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
examples: The non-preprocessed dataset (see the main script for more information).
|
49 |
-
features: The processed dataset (see the main script for more information).
|
50 |
-
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
51 |
-
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
52 |
-
first dimension must match the number of elements of :obj:`features`.
|
53 |
-
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
54 |
-
Whether or not the underlying dataset contains examples with no answers.
|
55 |
-
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
56 |
-
The total number of n-best predictions to generate when looking for an answer.
|
57 |
-
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
58 |
-
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
59 |
-
are not conditioned on one another.
|
60 |
-
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
|
61 |
-
The threshold used to select the null answer: if the best answer has a score that is less than the score of
|
62 |
-
the null answer minus this threshold, the null answer is selected for this example (note that the score of
|
63 |
-
the null answer for an example giving several features is the minimum of the scores for the null answer on
|
64 |
-
each feature: all features must be aligned on the fact they `want` to predict a null answer).
|
65 |
-
|
66 |
-
Only useful when :obj:`version_2_with_negative` is :obj:`True`.
|
67 |
-
output_dir (:obj:`str`, `optional`):
|
68 |
-
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
69 |
-
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
70 |
-
answers, are saved in `output_dir`.
|
71 |
-
prefix (:obj:`str`, `optional`):
|
72 |
-
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
73 |
-
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
74 |
-
``logging`` log level (e.g., ``logging.WARNING``)
|
75 |
-
"""
|
76 |
-
if len(predictions) != 2:
|
77 |
-
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
|
78 |
-
all_start_logits, all_end_logits = predictions
|
79 |
-
|
80 |
-
if len(predictions[0]) != len(features):
|
81 |
-
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
82 |
-
|
83 |
-
# Build a map example to its corresponding features.
|
84 |
-
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
85 |
-
features_per_example = collections.defaultdict(list)
|
86 |
-
for i, feature in enumerate(features):
|
87 |
-
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
88 |
-
|
89 |
-
# The dictionaries we have to fill.
|
90 |
-
all_predictions = collections.OrderedDict()
|
91 |
-
all_nbest_json = collections.OrderedDict()
|
92 |
-
if version_2_with_negative:
|
93 |
-
scores_diff_json = collections.OrderedDict()
|
94 |
-
|
95 |
-
# Logging.
|
96 |
-
logger.setLevel(log_level)
|
97 |
-
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
98 |
-
|
99 |
-
# Let's loop over all the examples!
|
100 |
-
for example_index, example in enumerate(tqdm(examples)):
|
101 |
-
# Those are the indices of the features associated to the current example.
|
102 |
-
feature_indices = features_per_example[example_index]
|
103 |
-
|
104 |
-
min_null_prediction = None
|
105 |
-
prelim_predictions = []
|
106 |
-
|
107 |
-
# Looping through all the features associated to the current example.
|
108 |
-
for feature_index in feature_indices:
|
109 |
-
# We grab the predictions of the model for this feature.
|
110 |
-
start_logits = all_start_logits[feature_index]
|
111 |
-
end_logits = all_end_logits[feature_index]
|
112 |
-
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
113 |
-
# context.
|
114 |
-
offset_mapping = features[feature_index]["offset_mapping"]
|
115 |
-
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
116 |
-
# available in the current feature.
|
117 |
-
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
118 |
-
|
119 |
-
# Update minimum null prediction.
|
120 |
-
feature_null_score = start_logits[0] + end_logits[0]
|
121 |
-
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
|
122 |
-
min_null_prediction = {
|
123 |
-
"offsets": (0, 0),
|
124 |
-
"score": feature_null_score,
|
125 |
-
"start_logit": start_logits[0],
|
126 |
-
"end_logit": end_logits[0],
|
127 |
-
}
|
128 |
-
|
129 |
-
# Go through all possibilities for the `n_best_size` greater start and end logits.
|
130 |
-
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
131 |
-
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
132 |
-
for start_index in start_indexes:
|
133 |
-
for end_index in end_indexes:
|
134 |
-
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
|
135 |
-
# to part of the input_ids that are not in the context.
|
136 |
-
if (
|
137 |
-
start_index >= len(offset_mapping)
|
138 |
-
or end_index >= len(offset_mapping)
|
139 |
-
or offset_mapping[start_index] is None
|
140 |
-
or len(offset_mapping[start_index]) < 2
|
141 |
-
or offset_mapping[end_index] is None
|
142 |
-
or len(offset_mapping[end_index]) < 2
|
143 |
-
):
|
144 |
-
continue
|
145 |
-
# Don't consider answers with a length that is either < 0 or > max_answer_length.
|
146 |
-
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
147 |
-
continue
|
148 |
-
# Don't consider answer that don't have the maximum context available (if such information is
|
149 |
-
# provided).
|
150 |
-
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
151 |
-
continue
|
152 |
-
|
153 |
-
prelim_predictions.append(
|
154 |
-
{
|
155 |
-
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
156 |
-
"score": start_logits[start_index] + end_logits[end_index],
|
157 |
-
"start_logit": start_logits[start_index],
|
158 |
-
"end_logit": end_logits[end_index],
|
159 |
-
}
|
160 |
-
)
|
161 |
-
if version_2_with_negative and min_null_prediction is not None:
|
162 |
-
# Add the minimum null prediction
|
163 |
-
prelim_predictions.append(min_null_prediction)
|
164 |
-
null_score = min_null_prediction["score"]
|
165 |
-
|
166 |
-
# Only keep the best `n_best_size` predictions.
|
167 |
-
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
168 |
-
|
169 |
-
# Add back the minimum null prediction if it was removed because of its low score.
|
170 |
-
if (
|
171 |
-
version_2_with_negative
|
172 |
-
and min_null_prediction is not None
|
173 |
-
and not any(p["offsets"] == (0, 0) for p in predictions)
|
174 |
-
):
|
175 |
-
predictions.append(min_null_prediction)
|
176 |
-
|
177 |
-
# Use the offsets to gather the answer text in the original context.
|
178 |
-
context = example["context"]
|
179 |
-
for pred in predictions:
|
180 |
-
offsets = pred.pop("offsets")
|
181 |
-
pred["text"] = context[offsets[0] : offsets[1]]
|
182 |
-
|
183 |
-
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
184 |
-
# failure.
|
185 |
-
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
|
186 |
-
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
|
187 |
-
|
188 |
-
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
189 |
-
# the LogSumExp trick).
|
190 |
-
scores = np.array([pred.pop("score") for pred in predictions])
|
191 |
-
exp_scores = np.exp(scores - np.max(scores))
|
192 |
-
probs = exp_scores / exp_scores.sum()
|
193 |
-
|
194 |
-
# Include the probabilities in our predictions.
|
195 |
-
for prob, pred in zip(probs, predictions):
|
196 |
-
pred["probability"] = prob
|
197 |
-
|
198 |
-
# Pick the best prediction. If the null answer is not possible, this is easy.
|
199 |
-
if not version_2_with_negative:
|
200 |
-
all_predictions[example["id"]] = predictions[0]["text"]
|
201 |
-
else:
|
202 |
-
# Otherwise we first need to find the best non-empty prediction.
|
203 |
-
i = 0
|
204 |
-
while predictions[i]["text"] == "":
|
205 |
-
i += 1
|
206 |
-
best_non_null_pred = predictions[i]
|
207 |
-
|
208 |
-
# Then we compare to the null prediction using the threshold.
|
209 |
-
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
|
210 |
-
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable.
|
211 |
-
if score_diff > null_score_diff_threshold:
|
212 |
-
all_predictions[example["id"]] = ""
|
213 |
-
else:
|
214 |
-
all_predictions[example["id"]] = best_non_null_pred["text"]
|
215 |
-
|
216 |
-
# Make `predictions` JSON-serializable by casting np.float back to float.
|
217 |
-
all_nbest_json[example["id"]] = [
|
218 |
-
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
219 |
-
for pred in predictions
|
220 |
-
]
|
221 |
-
|
222 |
-
# If we have an output_dir, let's save all those dicts.
|
223 |
-
if output_dir is not None:
|
224 |
-
if not os.path.isdir(output_dir):
|
225 |
-
raise OSError(f"{output_dir} is not a directory.")
|
226 |
-
|
227 |
-
prediction_file = os.path.join(
|
228 |
-
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
229 |
-
)
|
230 |
-
nbest_file = os.path.join(
|
231 |
-
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
232 |
-
)
|
233 |
-
if version_2_with_negative:
|
234 |
-
null_odds_file = os.path.join(
|
235 |
-
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
236 |
-
)
|
237 |
-
|
238 |
-
logger.info(f"Saving predictions to {prediction_file}.")
|
239 |
-
with open(prediction_file, "w") as writer:
|
240 |
-
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
241 |
-
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
242 |
-
with open(nbest_file, "w") as writer:
|
243 |
-
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
244 |
-
if version_2_with_negative:
|
245 |
-
logger.info(f"Saving null_odds to {null_odds_file}.")
|
246 |
-
with open(null_odds_file, "w") as writer:
|
247 |
-
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
248 |
-
|
249 |
-
return all_predictions
|
250 |
-
|
251 |
-
|
252 |
-
def postprocess_qa_predictions_with_beam_search(
|
253 |
-
examples,
|
254 |
-
features,
|
255 |
-
predictions: tuple[np.ndarray, np.ndarray],
|
256 |
-
version_2_with_negative: bool = False,
|
257 |
-
n_best_size: int = 20,
|
258 |
-
max_answer_length: int = 30,
|
259 |
-
start_n_top: int = 5,
|
260 |
-
end_n_top: int = 5,
|
261 |
-
output_dir: Optional[str] = None,
|
262 |
-
prefix: Optional[str] = None,
|
263 |
-
log_level: Optional[int] = logging.WARNING,
|
264 |
-
):
|
265 |
-
"""
|
266 |
-
Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
|
267 |
-
original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
|
268 |
-
cls token predictions.
|
269 |
-
|
270 |
-
Args:
|
271 |
-
examples: The non-preprocessed dataset (see the main script for more information).
|
272 |
-
features: The processed dataset (see the main script for more information).
|
273 |
-
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
274 |
-
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
275 |
-
first dimension must match the number of elements of :obj:`features`.
|
276 |
-
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
277 |
-
Whether or not the underlying dataset contains examples with no answers.
|
278 |
-
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
279 |
-
The total number of n-best predictions to generate when looking for an answer.
|
280 |
-
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
281 |
-
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
282 |
-
are not conditioned on one another.
|
283 |
-
start_n_top (:obj:`int`, `optional`, defaults to 5):
|
284 |
-
The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
|
285 |
-
end_n_top (:obj:`int`, `optional`, defaults to 5):
|
286 |
-
The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
|
287 |
-
output_dir (:obj:`str`, `optional`):
|
288 |
-
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
289 |
-
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
290 |
-
answers, are saved in `output_dir`.
|
291 |
-
prefix (:obj:`str`, `optional`):
|
292 |
-
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
293 |
-
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
294 |
-
``logging`` log level (e.g., ``logging.WARNING``)
|
295 |
-
"""
|
296 |
-
if len(predictions) != 5:
|
297 |
-
raise ValueError("`predictions` should be a tuple with five elements.")
|
298 |
-
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
|
299 |
-
|
300 |
-
if len(predictions[0]) != len(features):
|
301 |
-
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
302 |
-
|
303 |
-
# Build a map example to its corresponding features.
|
304 |
-
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
305 |
-
features_per_example = collections.defaultdict(list)
|
306 |
-
for i, feature in enumerate(features):
|
307 |
-
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
308 |
-
|
309 |
-
# The dictionaries we have to fill.
|
310 |
-
all_predictions = collections.OrderedDict()
|
311 |
-
all_nbest_json = collections.OrderedDict()
|
312 |
-
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
|
313 |
-
|
314 |
-
# Logging.
|
315 |
-
logger.setLevel(log_level)
|
316 |
-
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
317 |
-
|
318 |
-
# Let's loop over all the examples!
|
319 |
-
for example_index, example in enumerate(tqdm(examples)):
|
320 |
-
# Those are the indices of the features associated to the current example.
|
321 |
-
feature_indices = features_per_example[example_index]
|
322 |
-
|
323 |
-
min_null_score = None
|
324 |
-
prelim_predictions = []
|
325 |
-
|
326 |
-
# Looping through all the features associated to the current example.
|
327 |
-
for feature_index in feature_indices:
|
328 |
-
# We grab the predictions of the model for this feature.
|
329 |
-
start_log_prob = start_top_log_probs[feature_index]
|
330 |
-
start_indexes = start_top_index[feature_index]
|
331 |
-
end_log_prob = end_top_log_probs[feature_index]
|
332 |
-
end_indexes = end_top_index[feature_index]
|
333 |
-
feature_null_score = cls_logits[feature_index]
|
334 |
-
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
335 |
-
# context.
|
336 |
-
offset_mapping = features[feature_index]["offset_mapping"]
|
337 |
-
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
338 |
-
# available in the current feature.
|
339 |
-
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
340 |
-
|
341 |
-
# Update minimum null prediction
|
342 |
-
if min_null_score is None or feature_null_score < min_null_score:
|
343 |
-
min_null_score = feature_null_score
|
344 |
-
|
345 |
-
# Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
|
346 |
-
for i in range(start_n_top):
|
347 |
-
for j in range(end_n_top):
|
348 |
-
start_index = int(start_indexes[i])
|
349 |
-
j_index = i * end_n_top + j
|
350 |
-
end_index = int(end_indexes[j_index])
|
351 |
-
# Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
|
352 |
-
# p_mask but let's not take any risk)
|
353 |
-
if (
|
354 |
-
start_index >= len(offset_mapping)
|
355 |
-
or end_index >= len(offset_mapping)
|
356 |
-
or offset_mapping[start_index] is None
|
357 |
-
or len(offset_mapping[start_index]) < 2
|
358 |
-
or offset_mapping[end_index] is None
|
359 |
-
or len(offset_mapping[end_index]) < 2
|
360 |
-
):
|
361 |
-
continue
|
362 |
-
|
363 |
-
# Don't consider answers with a length negative or > max_answer_length.
|
364 |
-
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
365 |
-
continue
|
366 |
-
# Don't consider answer that don't have the maximum context available (if such information is
|
367 |
-
# provided).
|
368 |
-
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
369 |
-
continue
|
370 |
-
prelim_predictions.append(
|
371 |
-
{
|
372 |
-
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
373 |
-
"score": start_log_prob[i] + end_log_prob[j_index],
|
374 |
-
"start_log_prob": start_log_prob[i],
|
375 |
-
"end_log_prob": end_log_prob[j_index],
|
376 |
-
}
|
377 |
-
)
|
378 |
-
|
379 |
-
# Only keep the best `n_best_size` predictions.
|
380 |
-
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
381 |
-
|
382 |
-
# Use the offsets to gather the answer text in the original context.
|
383 |
-
context = example["context"]
|
384 |
-
for pred in predictions:
|
385 |
-
offsets = pred.pop("offsets")
|
386 |
-
pred["text"] = context[offsets[0] : offsets[1]]
|
387 |
-
|
388 |
-
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
389 |
-
# failure.
|
390 |
-
if len(predictions) == 0:
|
391 |
-
# Without predictions min_null_score is going to be None and None will cause an exception later
|
392 |
-
min_null_score = -2e-6
|
393 |
-
predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score})
|
394 |
-
|
395 |
-
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
396 |
-
# the LogSumExp trick).
|
397 |
-
scores = np.array([pred.pop("score") for pred in predictions])
|
398 |
-
exp_scores = np.exp(scores - np.max(scores))
|
399 |
-
probs = exp_scores / exp_scores.sum()
|
400 |
-
|
401 |
-
# Include the probabilities in our predictions.
|
402 |
-
for prob, pred in zip(probs, predictions):
|
403 |
-
pred["probability"] = prob
|
404 |
-
|
405 |
-
# Pick the best prediction and set the probability for the null answer.
|
406 |
-
all_predictions[example["id"]] = predictions[0]["text"]
|
407 |
-
if version_2_with_negative:
|
408 |
-
scores_diff_json[example["id"]] = float(min_null_score)
|
409 |
-
|
410 |
-
# Make `predictions` JSON-serializable by casting np.float back to float.
|
411 |
-
all_nbest_json[example["id"]] = [
|
412 |
-
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
413 |
-
for pred in predictions
|
414 |
-
]
|
415 |
-
|
416 |
-
# If we have an output_dir, let's save all those dicts.
|
417 |
-
if output_dir is not None:
|
418 |
-
if not os.path.isdir(output_dir):
|
419 |
-
raise OSError(f"{output_dir} is not a directory.")
|
420 |
-
|
421 |
-
prediction_file = os.path.join(
|
422 |
-
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
423 |
-
)
|
424 |
-
nbest_file = os.path.join(
|
425 |
-
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
426 |
-
)
|
427 |
-
if version_2_with_negative:
|
428 |
-
null_odds_file = os.path.join(
|
429 |
-
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
430 |
-
)
|
431 |
-
|
432 |
-
logger.info(f"Saving predictions to {prediction_file}.")
|
433 |
-
with open(prediction_file, "w") as writer:
|
434 |
-
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
435 |
-
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
436 |
-
with open(nbest_file, "w") as writer:
|
437 |
-
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
438 |
-
if version_2_with_negative:
|
439 |
-
logger.info(f"Saving null_odds to {null_odds_file}.")
|
440 |
-
with open(null_odds_file, "w") as writer:
|
441 |
-
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
442 |
-
|
443 |
-
return all_predictions, scores_diff_json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|