Spaces:
Running
Running
Upload utils_qa.py
Browse files- utils_qa.py +443 -0
utils_qa.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Post-processing utilities for question answering.
|
16 |
+
"""
|
17 |
+
|
18 |
+
import collections
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
from typing import Optional
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
from tqdm.auto import tqdm
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def postprocess_qa_predictions(
|
32 |
+
examples,
|
33 |
+
features,
|
34 |
+
predictions: tuple[np.ndarray, np.ndarray],
|
35 |
+
version_2_with_negative: bool = False,
|
36 |
+
n_best_size: int = 20,
|
37 |
+
max_answer_length: int = 30,
|
38 |
+
null_score_diff_threshold: float = 0.0,
|
39 |
+
output_dir: Optional[str] = None,
|
40 |
+
prefix: Optional[str] = None,
|
41 |
+
log_level: Optional[int] = logging.WARNING,
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
Post-processes the predictions of a question-answering model to convert them to answers that are substrings of the
|
45 |
+
original contexts. This is the base postprocessing functions for models that only return start and end logits.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
49 |
+
features: The processed dataset (see the main script for more information).
|
50 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
51 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
52 |
+
first dimension must match the number of elements of :obj:`features`.
|
53 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
54 |
+
Whether or not the underlying dataset contains examples with no answers.
|
55 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
56 |
+
The total number of n-best predictions to generate when looking for an answer.
|
57 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
58 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
59 |
+
are not conditioned on one another.
|
60 |
+
null_score_diff_threshold (:obj:`float`, `optional`, defaults to 0):
|
61 |
+
The threshold used to select the null answer: if the best answer has a score that is less than the score of
|
62 |
+
the null answer minus this threshold, the null answer is selected for this example (note that the score of
|
63 |
+
the null answer for an example giving several features is the minimum of the scores for the null answer on
|
64 |
+
each feature: all features must be aligned on the fact they `want` to predict a null answer).
|
65 |
+
|
66 |
+
Only useful when :obj:`version_2_with_negative` is :obj:`True`.
|
67 |
+
output_dir (:obj:`str`, `optional`):
|
68 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
69 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
70 |
+
answers, are saved in `output_dir`.
|
71 |
+
prefix (:obj:`str`, `optional`):
|
72 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
73 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
74 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
75 |
+
"""
|
76 |
+
if len(predictions) != 2:
|
77 |
+
raise ValueError("`predictions` should be a tuple with two elements (start_logits, end_logits).")
|
78 |
+
all_start_logits, all_end_logits = predictions
|
79 |
+
|
80 |
+
if len(predictions[0]) != len(features):
|
81 |
+
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
82 |
+
|
83 |
+
# Build a map example to its corresponding features.
|
84 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
85 |
+
features_per_example = collections.defaultdict(list)
|
86 |
+
for i, feature in enumerate(features):
|
87 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
88 |
+
|
89 |
+
# The dictionaries we have to fill.
|
90 |
+
all_predictions = collections.OrderedDict()
|
91 |
+
all_nbest_json = collections.OrderedDict()
|
92 |
+
if version_2_with_negative:
|
93 |
+
scores_diff_json = collections.OrderedDict()
|
94 |
+
|
95 |
+
# Logging.
|
96 |
+
logger.setLevel(log_level)
|
97 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
98 |
+
|
99 |
+
# Let's loop over all the examples!
|
100 |
+
for example_index, example in enumerate(tqdm(examples)):
|
101 |
+
# Those are the indices of the features associated to the current example.
|
102 |
+
feature_indices = features_per_example[example_index]
|
103 |
+
|
104 |
+
min_null_prediction = None
|
105 |
+
prelim_predictions = []
|
106 |
+
|
107 |
+
# Looping through all the features associated to the current example.
|
108 |
+
for feature_index in feature_indices:
|
109 |
+
# We grab the predictions of the model for this feature.
|
110 |
+
start_logits = all_start_logits[feature_index]
|
111 |
+
end_logits = all_end_logits[feature_index]
|
112 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
113 |
+
# context.
|
114 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
115 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
116 |
+
# available in the current feature.
|
117 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
118 |
+
|
119 |
+
# Update minimum null prediction.
|
120 |
+
feature_null_score = start_logits[0] + end_logits[0]
|
121 |
+
if min_null_prediction is None or min_null_prediction["score"] > feature_null_score:
|
122 |
+
min_null_prediction = {
|
123 |
+
"offsets": (0, 0),
|
124 |
+
"score": feature_null_score,
|
125 |
+
"start_logit": start_logits[0],
|
126 |
+
"end_logit": end_logits[0],
|
127 |
+
}
|
128 |
+
|
129 |
+
# Go through all possibilities for the `n_best_size` greater start and end logits.
|
130 |
+
start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
131 |
+
end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
|
132 |
+
for start_index in start_indexes:
|
133 |
+
for end_index in end_indexes:
|
134 |
+
# Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
|
135 |
+
# to part of the input_ids that are not in the context.
|
136 |
+
if (
|
137 |
+
start_index >= len(offset_mapping)
|
138 |
+
or end_index >= len(offset_mapping)
|
139 |
+
or offset_mapping[start_index] is None
|
140 |
+
or len(offset_mapping[start_index]) < 2
|
141 |
+
or offset_mapping[end_index] is None
|
142 |
+
or len(offset_mapping[end_index]) < 2
|
143 |
+
):
|
144 |
+
continue
|
145 |
+
# Don't consider answers with a length that is either < 0 or > max_answer_length.
|
146 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
147 |
+
continue
|
148 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
149 |
+
# provided).
|
150 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
151 |
+
continue
|
152 |
+
|
153 |
+
prelim_predictions.append(
|
154 |
+
{
|
155 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
156 |
+
"score": start_logits[start_index] + end_logits[end_index],
|
157 |
+
"start_logit": start_logits[start_index],
|
158 |
+
"end_logit": end_logits[end_index],
|
159 |
+
}
|
160 |
+
)
|
161 |
+
if version_2_with_negative and min_null_prediction is not None:
|
162 |
+
# Add the minimum null prediction
|
163 |
+
prelim_predictions.append(min_null_prediction)
|
164 |
+
null_score = min_null_prediction["score"]
|
165 |
+
|
166 |
+
# Only keep the best `n_best_size` predictions.
|
167 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
168 |
+
|
169 |
+
# Add back the minimum null prediction if it was removed because of its low score.
|
170 |
+
if (
|
171 |
+
version_2_with_negative
|
172 |
+
and min_null_prediction is not None
|
173 |
+
and not any(p["offsets"] == (0, 0) for p in predictions)
|
174 |
+
):
|
175 |
+
predictions.append(min_null_prediction)
|
176 |
+
|
177 |
+
# Use the offsets to gather the answer text in the original context.
|
178 |
+
context = example["context"]
|
179 |
+
for pred in predictions:
|
180 |
+
offsets = pred.pop("offsets")
|
181 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
182 |
+
|
183 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
184 |
+
# failure.
|
185 |
+
if len(predictions) == 0 or (len(predictions) == 1 and predictions[0]["text"] == ""):
|
186 |
+
predictions.insert(0, {"text": "empty", "start_logit": 0.0, "end_logit": 0.0, "score": 0.0})
|
187 |
+
|
188 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
189 |
+
# the LogSumExp trick).
|
190 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
191 |
+
exp_scores = np.exp(scores - np.max(scores))
|
192 |
+
probs = exp_scores / exp_scores.sum()
|
193 |
+
|
194 |
+
# Include the probabilities in our predictions.
|
195 |
+
for prob, pred in zip(probs, predictions):
|
196 |
+
pred["probability"] = prob
|
197 |
+
|
198 |
+
# Pick the best prediction. If the null answer is not possible, this is easy.
|
199 |
+
if not version_2_with_negative:
|
200 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
201 |
+
else:
|
202 |
+
# Otherwise we first need to find the best non-empty prediction.
|
203 |
+
i = 0
|
204 |
+
while predictions[i]["text"] == "":
|
205 |
+
i += 1
|
206 |
+
best_non_null_pred = predictions[i]
|
207 |
+
|
208 |
+
# Then we compare to the null prediction using the threshold.
|
209 |
+
score_diff = null_score - best_non_null_pred["start_logit"] - best_non_null_pred["end_logit"]
|
210 |
+
scores_diff_json[example["id"]] = float(score_diff) # To be JSON-serializable.
|
211 |
+
if score_diff > null_score_diff_threshold:
|
212 |
+
all_predictions[example["id"]] = ""
|
213 |
+
else:
|
214 |
+
all_predictions[example["id"]] = best_non_null_pred["text"]
|
215 |
+
|
216 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
217 |
+
all_nbest_json[example["id"]] = [
|
218 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
219 |
+
for pred in predictions
|
220 |
+
]
|
221 |
+
|
222 |
+
# If we have an output_dir, let's save all those dicts.
|
223 |
+
if output_dir is not None:
|
224 |
+
if not os.path.isdir(output_dir):
|
225 |
+
raise OSError(f"{output_dir} is not a directory.")
|
226 |
+
|
227 |
+
prediction_file = os.path.join(
|
228 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
229 |
+
)
|
230 |
+
nbest_file = os.path.join(
|
231 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
232 |
+
)
|
233 |
+
if version_2_with_negative:
|
234 |
+
null_odds_file = os.path.join(
|
235 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
236 |
+
)
|
237 |
+
|
238 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
239 |
+
with open(prediction_file, "w") as writer:
|
240 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
241 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
242 |
+
with open(nbest_file, "w") as writer:
|
243 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
244 |
+
if version_2_with_negative:
|
245 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
246 |
+
with open(null_odds_file, "w") as writer:
|
247 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
248 |
+
|
249 |
+
return all_predictions
|
250 |
+
|
251 |
+
|
252 |
+
def postprocess_qa_predictions_with_beam_search(
|
253 |
+
examples,
|
254 |
+
features,
|
255 |
+
predictions: tuple[np.ndarray, np.ndarray],
|
256 |
+
version_2_with_negative: bool = False,
|
257 |
+
n_best_size: int = 20,
|
258 |
+
max_answer_length: int = 30,
|
259 |
+
start_n_top: int = 5,
|
260 |
+
end_n_top: int = 5,
|
261 |
+
output_dir: Optional[str] = None,
|
262 |
+
prefix: Optional[str] = None,
|
263 |
+
log_level: Optional[int] = logging.WARNING,
|
264 |
+
):
|
265 |
+
"""
|
266 |
+
Post-processes the predictions of a question-answering model with beam search to convert them to answers that are substrings of the
|
267 |
+
original contexts. This is the postprocessing functions for models that return start and end logits, indices, as well as
|
268 |
+
cls token predictions.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
examples: The non-preprocessed dataset (see the main script for more information).
|
272 |
+
features: The processed dataset (see the main script for more information).
|
273 |
+
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
|
274 |
+
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
|
275 |
+
first dimension must match the number of elements of :obj:`features`.
|
276 |
+
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
277 |
+
Whether or not the underlying dataset contains examples with no answers.
|
278 |
+
n_best_size (:obj:`int`, `optional`, defaults to 20):
|
279 |
+
The total number of n-best predictions to generate when looking for an answer.
|
280 |
+
max_answer_length (:obj:`int`, `optional`, defaults to 30):
|
281 |
+
The maximum length of an answer that can be generated. This is needed because the start and end predictions
|
282 |
+
are not conditioned on one another.
|
283 |
+
start_n_top (:obj:`int`, `optional`, defaults to 5):
|
284 |
+
The number of top start logits too keep when searching for the :obj:`n_best_size` predictions.
|
285 |
+
end_n_top (:obj:`int`, `optional`, defaults to 5):
|
286 |
+
The number of top end logits too keep when searching for the :obj:`n_best_size` predictions.
|
287 |
+
output_dir (:obj:`str`, `optional`):
|
288 |
+
If provided, the dictionaries of predictions, n_best predictions (with their scores and logits) and, if
|
289 |
+
:obj:`version_2_with_negative=True`, the dictionary of the scores differences between best and null
|
290 |
+
answers, are saved in `output_dir`.
|
291 |
+
prefix (:obj:`str`, `optional`):
|
292 |
+
If provided, the dictionaries mentioned above are saved with `prefix` added to their names.
|
293 |
+
log_level (:obj:`int`, `optional`, defaults to ``logging.WARNING``):
|
294 |
+
``logging`` log level (e.g., ``logging.WARNING``)
|
295 |
+
"""
|
296 |
+
if len(predictions) != 5:
|
297 |
+
raise ValueError("`predictions` should be a tuple with five elements.")
|
298 |
+
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = predictions
|
299 |
+
|
300 |
+
if len(predictions[0]) != len(features):
|
301 |
+
raise ValueError(f"Got {len(predictions[0])} predictions and {len(features)} features.")
|
302 |
+
|
303 |
+
# Build a map example to its corresponding features.
|
304 |
+
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
305 |
+
features_per_example = collections.defaultdict(list)
|
306 |
+
for i, feature in enumerate(features):
|
307 |
+
features_per_example[example_id_to_index[feature["example_id"]]].append(i)
|
308 |
+
|
309 |
+
# The dictionaries we have to fill.
|
310 |
+
all_predictions = collections.OrderedDict()
|
311 |
+
all_nbest_json = collections.OrderedDict()
|
312 |
+
scores_diff_json = collections.OrderedDict() if version_2_with_negative else None
|
313 |
+
|
314 |
+
# Logging.
|
315 |
+
logger.setLevel(log_level)
|
316 |
+
logger.info(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")
|
317 |
+
|
318 |
+
# Let's loop over all the examples!
|
319 |
+
for example_index, example in enumerate(tqdm(examples)):
|
320 |
+
# Those are the indices of the features associated to the current example.
|
321 |
+
feature_indices = features_per_example[example_index]
|
322 |
+
|
323 |
+
min_null_score = None
|
324 |
+
prelim_predictions = []
|
325 |
+
|
326 |
+
# Looping through all the features associated to the current example.
|
327 |
+
for feature_index in feature_indices:
|
328 |
+
# We grab the predictions of the model for this feature.
|
329 |
+
start_log_prob = start_top_log_probs[feature_index]
|
330 |
+
start_indexes = start_top_index[feature_index]
|
331 |
+
end_log_prob = end_top_log_probs[feature_index]
|
332 |
+
end_indexes = end_top_index[feature_index]
|
333 |
+
feature_null_score = cls_logits[feature_index]
|
334 |
+
# This is what will allow us to map some the positions in our logits to span of texts in the original
|
335 |
+
# context.
|
336 |
+
offset_mapping = features[feature_index]["offset_mapping"]
|
337 |
+
# Optional `token_is_max_context`, if provided we will remove answers that do not have the maximum context
|
338 |
+
# available in the current feature.
|
339 |
+
token_is_max_context = features[feature_index].get("token_is_max_context", None)
|
340 |
+
|
341 |
+
# Update minimum null prediction
|
342 |
+
if min_null_score is None or feature_null_score < min_null_score:
|
343 |
+
min_null_score = feature_null_score
|
344 |
+
|
345 |
+
# Go through all possibilities for the `n_start_top`/`n_end_top` greater start and end logits.
|
346 |
+
for i in range(start_n_top):
|
347 |
+
for j in range(end_n_top):
|
348 |
+
start_index = int(start_indexes[i])
|
349 |
+
j_index = i * end_n_top + j
|
350 |
+
end_index = int(end_indexes[j_index])
|
351 |
+
# Don't consider out-of-scope answers (last part of the test should be unnecessary because of the
|
352 |
+
# p_mask but let's not take any risk)
|
353 |
+
if (
|
354 |
+
start_index >= len(offset_mapping)
|
355 |
+
or end_index >= len(offset_mapping)
|
356 |
+
or offset_mapping[start_index] is None
|
357 |
+
or len(offset_mapping[start_index]) < 2
|
358 |
+
or offset_mapping[end_index] is None
|
359 |
+
or len(offset_mapping[end_index]) < 2
|
360 |
+
):
|
361 |
+
continue
|
362 |
+
|
363 |
+
# Don't consider answers with a length negative or > max_answer_length.
|
364 |
+
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
|
365 |
+
continue
|
366 |
+
# Don't consider answer that don't have the maximum context available (if such information is
|
367 |
+
# provided).
|
368 |
+
if token_is_max_context is not None and not token_is_max_context.get(str(start_index), False):
|
369 |
+
continue
|
370 |
+
prelim_predictions.append(
|
371 |
+
{
|
372 |
+
"offsets": (offset_mapping[start_index][0], offset_mapping[end_index][1]),
|
373 |
+
"score": start_log_prob[i] + end_log_prob[j_index],
|
374 |
+
"start_log_prob": start_log_prob[i],
|
375 |
+
"end_log_prob": end_log_prob[j_index],
|
376 |
+
}
|
377 |
+
)
|
378 |
+
|
379 |
+
# Only keep the best `n_best_size` predictions.
|
380 |
+
predictions = sorted(prelim_predictions, key=lambda x: x["score"], reverse=True)[:n_best_size]
|
381 |
+
|
382 |
+
# Use the offsets to gather the answer text in the original context.
|
383 |
+
context = example["context"]
|
384 |
+
for pred in predictions:
|
385 |
+
offsets = pred.pop("offsets")
|
386 |
+
pred["text"] = context[offsets[0] : offsets[1]]
|
387 |
+
|
388 |
+
# In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
|
389 |
+
# failure.
|
390 |
+
if len(predictions) == 0:
|
391 |
+
# Without predictions min_null_score is going to be None and None will cause an exception later
|
392 |
+
min_null_score = -2e-6
|
393 |
+
predictions.insert(0, {"text": "", "start_logit": -1e-6, "end_logit": -1e-6, "score": min_null_score})
|
394 |
+
|
395 |
+
# Compute the softmax of all scores (we do it with numpy to stay independent from torch/tf in this file, using
|
396 |
+
# the LogSumExp trick).
|
397 |
+
scores = np.array([pred.pop("score") for pred in predictions])
|
398 |
+
exp_scores = np.exp(scores - np.max(scores))
|
399 |
+
probs = exp_scores / exp_scores.sum()
|
400 |
+
|
401 |
+
# Include the probabilities in our predictions.
|
402 |
+
for prob, pred in zip(probs, predictions):
|
403 |
+
pred["probability"] = prob
|
404 |
+
|
405 |
+
# Pick the best prediction and set the probability for the null answer.
|
406 |
+
all_predictions[example["id"]] = predictions[0]["text"]
|
407 |
+
if version_2_with_negative:
|
408 |
+
scores_diff_json[example["id"]] = float(min_null_score)
|
409 |
+
|
410 |
+
# Make `predictions` JSON-serializable by casting np.float back to float.
|
411 |
+
all_nbest_json[example["id"]] = [
|
412 |
+
{k: (float(v) if isinstance(v, (np.float16, np.float32, np.float64)) else v) for k, v in pred.items()}
|
413 |
+
for pred in predictions
|
414 |
+
]
|
415 |
+
|
416 |
+
# If we have an output_dir, let's save all those dicts.
|
417 |
+
if output_dir is not None:
|
418 |
+
if not os.path.isdir(output_dir):
|
419 |
+
raise OSError(f"{output_dir} is not a directory.")
|
420 |
+
|
421 |
+
prediction_file = os.path.join(
|
422 |
+
output_dir, "predictions.json" if prefix is None else f"{prefix}_predictions.json"
|
423 |
+
)
|
424 |
+
nbest_file = os.path.join(
|
425 |
+
output_dir, "nbest_predictions.json" if prefix is None else f"{prefix}_nbest_predictions.json"
|
426 |
+
)
|
427 |
+
if version_2_with_negative:
|
428 |
+
null_odds_file = os.path.join(
|
429 |
+
output_dir, "null_odds.json" if prefix is None else f"{prefix}_null_odds.json"
|
430 |
+
)
|
431 |
+
|
432 |
+
logger.info(f"Saving predictions to {prediction_file}.")
|
433 |
+
with open(prediction_file, "w") as writer:
|
434 |
+
writer.write(json.dumps(all_predictions, indent=4) + "\n")
|
435 |
+
logger.info(f"Saving nbest_preds to {nbest_file}.")
|
436 |
+
with open(nbest_file, "w") as writer:
|
437 |
+
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
|
438 |
+
if version_2_with_negative:
|
439 |
+
logger.info(f"Saving null_odds to {null_odds_file}.")
|
440 |
+
with open(null_odds_file, "w") as writer:
|
441 |
+
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
|
442 |
+
|
443 |
+
return all_predictions, scores_diff_json
|