File size: 6,281 Bytes
eca7f1c
 
 
 
 
e46de05
eca7f1c
 
b74770b
eca7f1c
 
 
 
b74770b
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123019e
eca7f1c
123019e
eca7f1c
 
e46de05
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311a549
eca7f1c
 
 
b74770b
eca7f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e46de05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d29b50b
 
e46de05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385e35b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
import altair as alt

# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
    "Hyderabad": [17.385044, 78.486671],
    "Gadwal": [16.2351, 77.8052],
    "Kurnool": [15.8281, 78.0373],
    "Ballari": [12.9716, 77.5946]
}

# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
    return [
        base_lat + random.uniform(-0.02, 0.02),
        base_lon + random.uniform(-0.02, 0.02)
    ]

def simulate_pole(pole_id, site_name):
    lat, lon = generate_location(*SITES[site_name])
    solar_kwh = round(random.uniform(3.0, 7.5), 2)
    wind_kwh = round(random.uniform(0.5, 2.0), 2)
    power_required = round(random.uniform(4.0, 8.0), 2)
    total_power = solar_kwh + wind_kwh
    power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'

    vibration = round(random.uniform(0, 5), 2)
    camera_status = random.choice(['Online', 'Offline'])

    alert_level = 'Green'
    if vibration > 3:
        alert_level = 'Yellow'
    if vibration > 4.5:
        alert_level = 'Red'

    health_score = max(0, 100 - (vibration * 10))
    timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))

    return {
        'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
        'Site': site_name,
        'Latitude': lat,
        'Longitude': lon,
        'Solar (kWh)': solar_kwh,
        'Wind (kWh)': wind_kwh,
        'Power Required (kWh)': power_required,
        'Total Power (kWh)': total_power,
        'Power Status': power_status,
        'Vibration (g)': vibration,
        'Camera Status': camera_status,
        'Health Score': round(health_score, 2),
        'Alert Level': alert_level,
        'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
    }

# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")

selected_site = st.selectbox("Select a site to view:", options=list(SITES.keys()), index=0)

if selected_site in SITES:
    with st.spinner(f"Simulating poles at {selected_site}..."):
        poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(POLES_PER_SITE)]
        df = pd.DataFrame(poles_data)
        site_df = df[df['Site'] == selected_site]

    # Summary Metrics
    col1, col2, col3 = st.columns(3)
    col1.metric("Total Poles", site_df.shape[0])
    col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
    col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])

    # Table View
    st.subheader(f"πŸ“‹ Pole Data Table for {selected_site}")
    with st.expander("Filter Options"):
        alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
        camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())

    filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
    st.dataframe(filtered_df, use_container_width=True)

    # ---- Energy Chart ----
    st.subheader("πŸ”‹ Energy Generation per Pole")

    energy_long_df = site_df[['Pole ID', 'Solar (kWh)', 'Wind (kWh)']].melt(
        id_vars='Pole ID',
        value_vars=['Solar (kWh)', 'Wind (kWh)'],
        var_name='Energy Source',
        value_name='kWh'
    )

    bar_chart = alt.Chart(energy_long_df).mark_bar().encode(
        x=alt.X('Pole ID:N', sort=None, title='Pole ID'),
        y=alt.Y('kWh:Q'),
        color='Energy Source:N',
        tooltip=['Pole ID', 'Energy Source', 'kWh']
    ).properties(
        width=800,
        height=400
    ).configure_axisX(labelAngle=45)

    st.altair_chart(bar_chart, use_container_width=True)

    # ---- Fault Type Filter ----
    st.subheader("⚠️ Map Filter: Select Fault Type(s)")

    fault_options = ['High Vibration (>3g)', 'Camera Offline', 'Power Insufficient']
    selected_faults = st.multiselect("Show poles with these fault conditions:", options=fault_options, default=fault_options)

    def fault_condition(row):
        return (
            ('High Vibration (>3g)' in selected_faults and row['Vibration (g)'] > 3) or
            ('Camera Offline' in selected_faults and row['Camera Status'] == 'Offline') or
            ('Power Insufficient' in selected_faults and row['Power Status'] == 'Insufficient')
        )

    fault_df = site_df[site_df.apply(fault_condition, axis=1)] if selected_faults else site_df

    # ---- Map Color Logic ----
    def get_color(alert):
        if alert == 'Green':
            return [0, 255, 0, 160]
        elif alert == 'Yellow':
            return [255, 255, 0, 160]
        elif alert == 'Red':
            return [255, 0, 0, 160]
        return [128, 128, 128, 160]

    fault_df['color'] = fault_df['Alert Level'].apply(get_color)

    # ---- Map ----
    st.subheader("πŸ“ Pole Locations with Selected Faults")
    st.pydeck_chart(pdk.Deck(
        initial_view_state=pdk.ViewState(
            latitude=SITES[selected_site][0],
            longitude=SITES[selected_site][1],
            zoom=12,
            pitch=50
        ),
        layers=[
            pdk.Layer(
                'ScatterplotLayer',
                data=fault_df,
                get_position='[Longitude, Latitude]',
                get_color='color',
                get_radius=100,
                pickable=True,
            )
        ],
        tooltip={
            "html": """
            <b>Pole ID:</b> {Pole ID}<br/>
            <b>Alert Level:</b> {Alert Level}<br/>
            <b>Health Score:</b> {Health Score}<br/>
            <b>Power Status:</b> {Power Status}<br/>
            <b>Vibration (g):</b> {Vibration (g)}<br/>
            <b>Camera:</b> {Camera Status}<br/>
            <b>Solar (kWh):</b> {Solar (kWh)}<br/>
            <b>Wind (kWh):</b> {Wind (kWh)}<br/>
            <b>Last Checked:</b> {Last Checked}
            """,
            "style": {
                "backgroundColor": "steelblue",
                "color": "white",
                "fontSize": "12px"
            }
        }
    ))