import random
import pandas as pd
import streamlit as st
import pydeck as pdk
from datetime import datetime, timedelta
import altair as alt
# ---- Constants ----
POLES_PER_SITE = 12
SITES = {
"Hyderabad": [17.385044, 78.486671],
"Gadwal": [16.2351, 77.8052],
"Kurnool": [15.8281, 78.0373],
"Ballari": [12.9716, 77.5946]
}
# ---- Helper Functions ----
def generate_location(base_lat, base_lon):
return [
base_lat + random.uniform(-0.02, 0.02),
base_lon + random.uniform(-0.02, 0.02)
]
def simulate_pole(pole_id, site_name):
lat, lon = generate_location(*SITES[site_name])
solar_kwh = round(random.uniform(3.0, 7.5), 2)
wind_kwh = round(random.uniform(0.5, 2.0), 2)
power_required = round(random.uniform(4.0, 8.0), 2)
total_power = solar_kwh + wind_kwh
power_status = 'Sufficient' if total_power >= power_required else 'Insufficient'
vibration = round(random.uniform(0, 5), 2)
camera_status = random.choice(['Online', 'Offline'])
alert_level = 'Green'
if vibration > 3:
alert_level = 'Yellow'
if vibration > 4.5:
alert_level = 'Red'
health_score = max(0, 100 - (vibration * 10))
timestamp = datetime.now() - timedelta(hours=random.randint(0, 6))
return {
'Pole ID': f'{site_name[:3].upper()}-{pole_id:03}',
'Site': site_name,
'Latitude': lat,
'Longitude': lon,
'Solar (kWh)': solar_kwh,
'Wind (kWh)': wind_kwh,
'Power Required (kWh)': power_required,
'Total Power (kWh)': total_power,
'Power Status': power_status,
'Vibration (g)': vibration,
'Camera Status': camera_status,
'Health Score': round(health_score, 2),
'Alert Level': alert_level,
'Last Checked': timestamp.strftime('%Y-%m-%d %H:%M:%S')
}
# ---- Streamlit UI ----
st.set_page_config(page_title="Smart Pole Monitoring", layout="wide")
st.title("🌍 Smart Renewable Pole Monitoring - Multi-Site")
selected_site = st.selectbox("Select a site to view:", options=list(SITES.keys()), index=0)
if selected_site in SITES:
with st.spinner(f"Simulating poles at {selected_site}..."):
poles_data = [simulate_pole(i + 1, site) for site in SITES for i in range(POLES_PER_SITE)]
df = pd.DataFrame(poles_data)
site_df = df[df['Site'] == selected_site]
# Summary Metrics
col1, col2, col3 = st.columns(3)
col1.metric("Total Poles", site_df.shape[0])
col2.metric("Red Alerts", site_df[site_df['Alert Level'] == 'Red'].shape[0])
col3.metric("Power Insufficiencies", site_df[site_df['Power Status'] == 'Insufficient'].shape[0])
# Table View
st.subheader(f"📋 Pole Data Table for {selected_site}")
with st.expander("Filter Options"):
alert_filter = st.multiselect("Alert Level", options=site_df['Alert Level'].unique(), default=site_df['Alert Level'].unique())
camera_filter = st.multiselect("Camera Status", options=site_df['Camera Status'].unique(), default=site_df['Camera Status'].unique())
filtered_df = site_df[(site_df['Alert Level'].isin(alert_filter)) & (site_df['Camera Status'].isin(camera_filter))]
st.dataframe(filtered_df, use_container_width=True)
# ---- Energy Chart ----
st.subheader("🔋 Energy Generation per Pole")
energy_long_df = site_df[['Pole ID', 'Solar (kWh)', 'Wind (kWh)']].melt(
id_vars='Pole ID',
value_vars=['Solar (kWh)', 'Wind (kWh)'],
var_name='Energy Source',
value_name='kWh'
)
bar_chart = alt.Chart(energy_long_df).mark_bar().encode(
x=alt.X('Pole ID:N', sort=None, title='Pole ID'),
y=alt.Y('kWh:Q'),
color='Energy Source:N',
tooltip=['Pole ID', 'Energy Source', 'kWh']
).properties(
width=800,
height=400
).configure_axisX(labelAngle=45)
st.altair_chart(bar_chart, use_container_width=True)
# ---- Fault Type Filter ----
st.subheader("⚠️ Map Filter: Select Fault Type(s)")
fault_options = ['High Vibration (>3g)', 'Camera Offline', 'Power Insufficient']
selected_faults = st.multiselect("Show poles with these fault conditions:", options=fault_options, default=fault_options)
def fault_condition(row):
return (
('High Vibration (>3g)' in selected_faults and row['Vibration (g)'] > 3) or
('Camera Offline' in selected_faults and row['Camera Status'] == 'Offline') or
('Power Insufficient' in selected_faults and row['Power Status'] == 'Insufficient')
)
fault_df = site_df[site_df.apply(fault_condition, axis=1)] if selected_faults else site_df
# ---- Map Color Logic ----
def get_color(alert):
if alert == 'Green':
return [0, 255, 0, 160]
elif alert == 'Yellow':
return [255, 255, 0, 160]
elif alert == 'Red':
return [255, 0, 0, 160]
return [128, 128, 128, 160]
fault_df['color'] = fault_df['Alert Level'].apply(get_color)
# ---- Map ----
st.subheader("📍 Pole Locations with Selected Faults")
st.pydeck_chart(pdk.Deck(
initial_view_state=pdk.ViewState(
latitude=SITES[selected_site][0],
longitude=SITES[selected_site][1],
zoom=12,
pitch=50
),
layers=[
pdk.Layer(
'ScatterplotLayer',
data=fault_df,
get_position='[Longitude, Latitude]',
get_color='color',
get_radius=100,
pickable=True,
)
],
tooltip={
"html": """
Pole ID: {Pole ID}
Alert Level: {Alert Level}
Health Score: {Health Score}
Power Status: {Power Status}
Vibration (g): {Vibration (g)}
Camera: {Camera Status}
Solar (kWh): {Solar (kWh)}
Wind (kWh): {Wind (kWh)}
Last Checked: {Last Checked}
""",
"style": {
"backgroundColor": "steelblue",
"color": "white",
"fontSize": "12px"
}
}
))