DockerRecipe / app.py
TimInf's picture
Update app.py
4b9a04b verified
from transformers import FlaxAutoModelForSeq2SeqLM, AutoTokenizer, AutoModel
import torch
import numpy as np
import random
import json
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from datetime import datetime, timedelta
bert_model_name = "alexdseo/RecipeBERT"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
bert_model = AutoModel.from_pretrained(bert_model_name)
MODEL_NAME_OR_PATH = "flax-community/t5-recipe-generation"
t5_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME_OR_PATH, use_fast=True)
t5_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME_OR_PATH)
special_tokens = t5_tokenizer.all_special_tokens
tokens_map = {
"<sep>": "--",
"<section>": "\n"
}
# --- RecipeBERT-spezifische Funktionen ---
def get_embedding(text):
"""Berechnet das Embedding für einen Text mit Mean Pooling über alle Tokens"""
inputs = bert_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = bert_model(**inputs)
attention_mask = inputs['attention_mask']
token_embeddings = outputs.last_hidden_state
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return (sum_embeddings / sum_mask).squeeze(0)
def format_ingredients_for_bert(ingredients_list):
"""Formatiert Zutatenliste für BERT"""
return f"Ingredients: {', '.join(ingredients_list)}"
def normalize_ingredient_name(name):
return name.strip().lower()
def get_cosine_similarity(vec1, vec2):
"""Berechnet die Cosinus-Ähnlichkeit zwischen zwei Vektoren"""
if torch.is_tensor(vec1):
vec1 = vec1.detach().numpy()
if torch.is_tensor(vec2):
vec2 = vec2.detach().numpy()
vec1 = vec1.flatten()
vec2 = vec2.flatten()
dot_product = np.dot(vec1, vec2)
norm_a = np.linalg.norm(vec1)
norm_b = np.linalg.norm(vec2)
if norm_a == 0 or norm_b == 0:
return 0
return dot_product / (norm_a * norm_b)
def calculate_age_bonus(date_added_str: str, category: str) -> float:
"""
Berechnet einen prozentualen Bonus basierend auf dem Alter der Zutat.
- Standard: 0.5% pro Tag, max. 10%.
- Gemüse: 2.0% pro Tag, max. 10%.
"""
try:
# Handle 'Z' for UTC and parse to datetime object
date_added = datetime.fromisoformat(date_added_str.replace('Z', '+00:00'))
except ValueError:
print(f"Warning: Could not parse date_added_str: {date_added_str}. Returning 0 bonus.")
return 0.0
today = datetime.now()
days_since_added = (today - date_added).days
if days_since_added < 0: # Zutat aus der Zukunft? Ungültig.
return 0.0
if category and category.lower() == "vegetables":
daily_bonus = 0.02 # 2% pro Tag für Gemüse
else:
daily_bonus = 0.005 # 0.5% pro Tag für andere
bonus = days_since_added * daily_bonus
return min(bonus, 0.10) # Max 10% (0.10)
def find_best_ingredients(required_ingredients_names, available_ingredients_details, max_ingredients=6):
"""
Findet die besten Zutaten basierend auf RecipeBERT Embeddings
required_ingredients_names: Liste von Strings (nur Namen)
available_ingredients_details: Liste von IngredientDetail-Objekten
"""
required_ingredients_names = list(set(required_ingredients_names))
# Filtern der verfügbaren Zutaten, um sicherzustellen, dass keine Pflichtzutaten dabei sind
available_ingredients_filtered_details = [
item for item in available_ingredients_details
if item.name not in required_ingredients_names
]
# Wenn keine Pflichtzutaten vorhanden sind, aber verfügbare, wähle eine zufällig als Pflichtzutat
if not required_ingredients_names and available_ingredients_filtered_details:
random_item = random.choice(available_ingredients_filtered_details)
required_ingredients_names = [random_item.name]
# Entferne die zufällig gewählte Zutat aus den verfügbaren Details
available_ingredients_filtered_details = [
item for item in available_ingredients_filtered_details
if item.name != random_item.name
]
print(f"No required ingredients provided. Randomly selected: {required_ingredients_names[0]}")
if not required_ingredients_names or len(required_ingredients_names) >= max_ingredients:
return required_ingredients_names[:max_ingredients]
if not available_ingredients_filtered_details:
return required_ingredients_names
print(f"\n=== Suche passende Zutaten für Basis: {required_ingredients_names} ===")
print(f"Verfügbare Zutaten: {[item.name for item in available_ingredients_filtered_details]}")
print("-" * 50)
current_combination = required_ingredients_names.copy()
remaining_ingredients_details = available_ingredients_filtered_details.copy()
# Entferne Duplikate aus remaining_ingredients_details - nur eine Zutat pro Name
seen_names = set()
unique_remaining_ingredients = []
for item in remaining_ingredients_details:
if item.name not in seen_names:
unique_remaining_ingredients.append(item)
seen_names.add(item.name)
remaining_ingredients_details = unique_remaining_ingredients
num_to_add = min(max_ingredients - len(required_ingredients_names), len(remaining_ingredients_details))
for round_num in range(num_to_add):
best_ingredient_detail = None
best_score = -1
# Formatiere aktuelle Kombination für BERT
current_text = format_ingredients_for_bert(current_combination)
current_embedding = get_embedding(current_text)
print(f"\nRunde {round_num + 1} - Aktuelle Kombination: {current_combination}")
print("Teste verbleibende Zutaten:")
for ingredient_detail in remaining_ingredients_details:
# Berechne semantische Ähnlichkeit mit BERT
ingredient_text = format_ingredients_for_bert([ingredient_detail.name])
ingredient_embedding = get_embedding(ingredient_text)
similarity = get_cosine_similarity(current_embedding, ingredient_embedding)
# Berechne Altersbonus
age_bonus = calculate_age_bonus(ingredient_detail.dateAdded, ingredient_detail.category)
# Kombiniere Ähnlichkeit und Altersbonus
final_score = similarity + age_bonus
print(f" - '{ingredient_detail.name}': Ähnlichkeit = {similarity:.4f}, Altersbonus = {age_bonus:.4f}, Gesamt = {final_score:.4f}")
if final_score > best_score:
best_score = final_score
best_ingredient_detail = ingredient_detail
if best_ingredient_detail:
current_combination.append(best_ingredient_detail.name)
remaining_ingredients_details.remove(best_ingredient_detail)
# Berechne die Komponenten für die Ausgabe
best_similarity = get_cosine_similarity(
current_embedding,
get_embedding(format_ingredients_for_bert([best_ingredient_detail.name]))
)
best_age_bonus = calculate_age_bonus(best_ingredient_detail.dateAdded, best_ingredient_detail.category)
print(f"\n-> Runde {round_num + 1} abgeschlossen: Beste Zutat ist '{best_ingredient_detail.name}' mit Gesamtscore {best_score:.4f}")
print(f" (Ähnlichkeit: {best_similarity:.4f} + Altersbonus: {best_age_bonus:.4f})")
print(f" Neue Kombination: {current_combination}")
print("-" * 50)
else:
print("Keine weiteren passenden Zutaten gefunden.")
break
random.shuffle(current_combination)
print(f"\nEndgültige Zutatenkombination: {current_combination}")
return current_combination
# --- Chef Transformer-spezifische Funktionen ---
def skip_special_tokens(text, special_tokens):
"""Entfernt spezielle Tokens aus dem Text"""
for token in special_tokens:
text = text.replace(token, "")
return text
def target_postprocessing(texts, special_tokens):
"""Post-processed generierten Text"""
if not isinstance(texts, list):
texts = [texts]
new_texts = []
for text in texts:
text = skip_special_tokens(text, special_tokens)
for k, v in tokens_map.items():
text = text.replace(k, v)
new_texts.append(text)
return new_texts
def validate_recipe_ingredients(recipe_ingredients, expected_ingredients, tolerance=0):
"""
Validiert, ob das Rezept ungefähr die erwarteten Zutaten enthält.
"""
recipe_count = len([ing for ing in recipe_ingredients if ing and ing.strip()])
expected_count = len(expected_ingredients)
return abs(recipe_count - expected_count) == tolerance
def generate_recipe_with_t5(ingredients_list, max_retries=5):
"""Generiert ein Rezept mit dem T5 Rezeptgenerierungsmodell mit Validierung."""
original_ingredients = ingredients_list.copy()
for attempt in range(max_retries):
try:
if attempt > 0:
current_ingredients = original_ingredients.copy()
random.shuffle(current_ingredients)
else:
current_ingredients = ingredients_list
ingredients_string = ", ".join(current_ingredients)
prefix = "items: "
generation_kwargs = {
"max_length": 512,
"min_length": 64,
"do_sample": True,
"top_k": 60,
"top_p": 0.95
}
print(f"Attempt {attempt + 1}: {prefix + ingredients_string}") # Debug-Print
inputs = t5_tokenizer(
prefix + ingredients_string,
max_length=256,
padding="max_length",
truncation=True,
return_tensors="jax"
)
output_ids = t5_model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
**generation_kwargs
)
generated = output_ids.sequences
generated_text = target_postprocessing(
t5_tokenizer.batch_decode(generated, skip_special_tokens=False),
special_tokens
)[0]
recipe = {}
sections = generated_text.split("\n")
for section in sections:
section = section.strip()
if section.startswith("title:"):
recipe["title"] = section.replace("title:", "").strip().capitalize()
elif section.startswith("ingredients:"):
ingredients_text = section.replace("ingredients:", "").strip()
recipe["ingredients"] = [item.strip().capitalize() for item in ingredients_text.split("--") if item.strip()]
elif section.startswith("directions:"):
directions_text = section.replace("directions:", "").strip()
recipe["directions"] = [step.strip().capitalize() for step in directions_text.split("--") if step.strip()]
if "title" not in recipe:
recipe["title"] = f"Rezept mit {', '.join(current_ingredients[:3])}"
if "ingredients" not in recipe:
recipe["ingredients"] = current_ingredients
if "directions" not in recipe:
recipe["directions"] = ["Keine Anweisungen generiert"]
if validate_recipe_ingredients(recipe["ingredients"], original_ingredients):
print(f"Success on attempt {attempt + 1}: Recipe has correct number of ingredients") # Debug-Print
return recipe
else:
print(f"Attempt {attempt + 1} failed: Expected {len(original_ingredients)} ingredients, got {len(recipe['ingredients'])}") # Debug-Print
if attempt == max_retries - 1:
print("Max retries reached, returning last generated recipe") # Debug-Print
return recipe
except Exception as e:
print(f"Error in recipe generation attempt {attempt + 1}: {str(e)}") # Debug-Print
if attempt == max_retries - 1:
return {
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
"ingredients": original_ingredients,
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
}
return {
"title": f"Rezept mit {original_ingredients[0] if original_ingredients else 'Zutaten'}",
"ingredients": original_ingredients,
"directions": ["Fehler beim Generieren der Rezeptanweisungen"]
}
def process_recipe_request_logic(required_ingredients, available_ingredients_details, max_ingredients, max_retries):
"""
Kernlogik zur Verarbeitung einer Rezeptgenerierungsanfrage.
available_ingredients_details: Liste von IngredientDetail-Objekten
"""
if not required_ingredients and not available_ingredients_details:
return {"error": "Keine Zutaten angegeben"}
try:
optimized_ingredients = find_best_ingredients(
required_ingredients, available_ingredients_details, max_ingredients
)
recipe = generate_recipe_with_t5(optimized_ingredients, max_retries)
result = {
'title': recipe['title'],
'ingredients': recipe['ingredients'],
'directions': recipe['directions'],
'used_ingredients': optimized_ingredients
}
return result
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Fehler bei der Rezeptgenerierung: {str(e)}"}
# --- FastAPI-Implementierung ---
app = FastAPI(title="AI Recipe Generator API")
class IngredientDetail(BaseModel):
name: str
dateAdded: str
category: str
class RecipeRequest(BaseModel):
required_ingredients: list[str] = []
available_ingredients: list[IngredientDetail] = []
max_ingredients: int = 7
max_retries: int = 5
ingredients: list[str] = []
@app.post("/generate_recipe")
async def generate_recipe_api(request_data: RecipeRequest):
"""
Standard-REST-API-Endpunkt für die Flutter-App.
Nimmt direkt JSON-Daten an und gibt direkt JSON zurück.
"""
final_required_ingredients = request_data.required_ingredients
if not final_required_ingredients and request_data.ingredients:
final_required_ingredients = request_data.ingredients
result_dict = process_recipe_request_logic(
final_required_ingredients,
request_data.available_ingredients,
request_data.max_ingredients,
request_data.max_retries
)
return JSONResponse(content=result_dict)
@app.get("/")
async def read_root():
return {"message": "AI Recipe Generator API is running (FastAPI only)!"}