File size: 4,357 Bytes
28c256d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

_base_ = './rtmdet_x_8xb32-300e_coco.py'

model = dict(
    backbone=dict(arch='P6', out_indices=(2, 3, 4, 5)),
    neck=dict(in_channels=[320, 640, 960, 1280]),
    bbox_head=dict(
        anchor_generator=dict(
            type='MlvlPointGenerator', offset=0, strides=[8, 16, 32, 64])))

train_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='CachedMosaic', img_scale=(1280, 1280), pad_val=114.0),
    dict(
        type='RandomResize',
        scale=(2560, 2560),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(1280, 1280)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
    dict(
        type='CachedMixUp',
        img_scale=(1280, 1280),
        ratio_range=(1.0, 1.0),
        max_cached_images=20,
        pad_val=(114, 114, 114)),
    dict(type='PackDetInputs')
]

train_pipeline_stage2 = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='RandomResize',
        scale=(1280, 1280),
        ratio_range=(0.1, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=(1280, 1280)),
    dict(type='YOLOXHSVRandomAug'),
    dict(type='RandomFlip', prob=0.5),
    dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
    dict(type='PackDetInputs')
]

test_pipeline = [
    dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
    dict(type='Resize', scale=(1280, 1280), keep_ratio=True),
    dict(type='Pad', size=(1280, 1280), pad_val=dict(img=(114, 114, 114))),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]

train_dataloader = dict(
    batch_size=8, num_workers=20, dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=5, num_workers=20, dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader

max_epochs = 300
stage2_num_epochs = 20

base_lr = 0.004 * 32 / 256
optim_wrapper = dict(optimizer=dict(lr=base_lr))

param_scheduler = [
    dict(
        type='LinearLR',
        start_factor=1.0e-5,
        by_epoch=False,
        begin=0,
        end=1000),
    dict(
        # use cosine lr from 150 to 300 epoch
        type='CosineAnnealingLR',
        eta_min=base_lr * 0.05,
        begin=max_epochs // 2,
        end=max_epochs,
        T_max=max_epochs // 2,
        by_epoch=True,
        convert_to_iter_based=True),
]

custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0002,
        update_buffers=True,
        priority=49),
    dict(
        type='PipelineSwitchHook',
        switch_epoch=max_epochs - stage2_num_epochs,
        switch_pipeline=train_pipeline_stage2)
]

img_scales = [(1280, 1280), (640, 640), (1920, 1920)]
tta_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[
            [
                dict(type='Resize', scale=s, keep_ratio=True)
                for s in img_scales
            ],
            [
                # ``RandomFlip`` must be placed before ``Pad``, otherwise
                # bounding box coordinates after flipping cannot be
                # recovered correctly.
                dict(type='RandomFlip', prob=1.),
                dict(type='RandomFlip', prob=0.)
            ],
            [
                dict(
                    type='Pad',
                    size=(1920, 1920),
                    pad_val=dict(img=(114, 114, 114))),
            ],
            [dict(type='LoadAnnotations', with_bbox=True)],
            [
                dict(
                    type='PackDetInputs',
                    meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                               'scale_factor', 'flip', 'flip_direction'))
            ]
        ])
]