# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Please refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta for more details. # noqa # mmcv >= 2.0.1 # mmengine >= 0.8.0 from mmengine.config import read_base with read_base(): from .._base_.default_runtime import * from mmengine.dataset.sampler import DefaultSampler from mmengine.optim import OptimWrapper from mmengine.optim.scheduler.lr_scheduler import LinearLR, MultiStepLR from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop from torch.optim import SGD from mmdet.datasets import CocoDataset, RepeatDataset from mmdet.datasets.transforms.formatting import PackDetInputs from mmdet.datasets.transforms.loading import (FilterAnnotations, LoadAnnotations, LoadImageFromFile) from mmdet.datasets.transforms.transforms import (CachedMixUp, CachedMosaic, Pad, RandomCrop, RandomFlip, RandomResize, Resize) from mmdet.evaluation import CocoMetric # dataset settings dataset_type = CocoDataset data_root = 'data/coco/' image_size = (1024, 1024) backend_args = None train_pipeline = [ dict(type=LoadImageFromFile, backend_args=backend_args), dict(type=LoadAnnotations, with_bbox=True, with_mask=True), dict( type=RandomResize, scale=image_size, ratio_range=(0.1, 2.0), keep_ratio=True), dict( type=RandomCrop, crop_type='absolute_range', crop_size=image_size, recompute_bbox=True, allow_negative_crop=True), dict(type=FilterAnnotations, min_gt_bbox_wh=(1e-2, 1e-2)), dict(type=RandomFlip, prob=0.5), dict(type=PackDetInputs) ] test_pipeline = [ dict(type=LoadImageFromFile, backend_args=backend_args), dict(type=Resize, scale=(1333, 800), keep_ratio=True), dict(type=LoadAnnotations, with_bbox=True), dict( type=PackDetInputs, meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] # Use RepeatDataset to speed up training train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type=DefaultSampler, shuffle=True), dataset=dict( type=RepeatDataset, times=4, # simply change this from 2 to 16 for 50e - 400e training. dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type=DefaultSampler, shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_val2017.json', data_prefix=dict(img='val2017/'), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type=CocoMetric, ann_file=data_root + 'annotations/instances_val2017.json', metric=['bbox', 'segm'], format_only=False, backend_args=backend_args) test_evaluator = val_evaluator max_epochs = 25 train_cfg = dict( type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=5) val_cfg = dict(type=ValLoop) test_cfg = dict(type=TestLoop) # optimizer assumes bs=64 optim_wrapper = dict( type=OptimWrapper, optimizer=dict(type=SGD, lr=0.1, momentum=0.9, weight_decay=0.00004)) # learning rate param_scheduler = [ dict(type=LinearLR, start_factor=0.067, by_epoch=False, begin=0, end=500), dict( type=MultiStepLR, begin=0, end=max_epochs, by_epoch=True, milestones=[22, 24], gamma=0.1) ] # only keep latest 2 checkpoints default_hooks.update(dict(checkpoint=dict(max_keep_ckpts=2))) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (32 GPUs) x (2 samples per GPU) auto_scale_lr = dict(base_batch_size=64)