File size: 8,456 Bytes
5276ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe7ffcd
 
b8a5f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebdb94b
b8a5f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5276ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import json
import time
import requests
import gradio as gr

# Read secrets and sanitize URL
ENDPOINT_URL = (os.environ.get("ENDPOINT_URL") or "https://erxvjreo1onxvdf7.us-east4.gcp.endpoints.huggingface.cloud").strip().rstrip("/")
HF_TOKEN = (os.environ.get("HF_TOKEN") or "").strip()

# Debug logging
print(f"🚀 DEBUG: ENDPOINT_URL set to: {ENDPOINT_URL}")
print(f"🚀 DEBUG: HF_TOKEN present: {'Yes' if HF_TOKEN else 'No'}")

if not ENDPOINT_URL:
	raise RuntimeError("Missing ENDPOINT_URL Space secret")

HEADERS = {
	"Content-Type": "application/json",
	"Accept": "application/json",
}
if HF_TOKEN:
	HEADERS["Authorization"] = f"Bearer {HF_TOKEN}"

SYSTEM_PROMPT_DEFAULT = """You are a helpful AI assistant for Isaac Sim 5.0, Isaac Lab 2.1, and Omniverse Kit 107.3 robotics development. You specialize in NVIDIA robotics development, computer vision, sensor integration, and simulation workflows.

CRITICAL API GUIDANCE - Isaac Sim 5.0 Extension System:

📦 CORE EXTENSIONS (isaacsim.*):
✅ isaacsim.core.api - World, SimulationContext
✅ isaacsim.core.prims - Articulation, RigidPrim, XFormPrim  
✅ isaacsim.core.api.objects - DynamicCuboid, VisualCuboid
✅ isaacsim.core.utils.stage - add_reference_to_stage
✅ isaacsim.storage.native - get_assets_root_path
✅ isaacsim.sensors.camera - Camera APIs
✅ isaacsim.sensors.physics - Contact, Effort, IMU sensors
✅ isaacsim.robot.manipulators - Manipulator APIs
✅ isaacsim.replicator.* - Synthetic data generation

🔧 USD/PHYSICS (pxr/omni):
✅ from pxr import UsdPhysics, PhysxSchema, Gf, UsdGeom
✅ import omni.usd - USD stage operations
✅ import omni.graph.core as og - OmniGraph
✅ import carb - Logging framework

🎯 CORRECT PATTERNS:

Basic Setup:
```python
from isaacsim import SimulationApp
simulation_app = SimulationApp({"headless": False})

from isaacsim.core.api import World
from isaacsim.core.prims import Articulation
from isaacsim.storage.native import get_assets_root_path
```

Robot Loading:
```python
from isaacsim.core.utils.stage import add_reference_to_stage
asset_path = get_assets_root_path() + "<path_to_asset>" 
add_reference_to_stage(usd_path=asset_path, prim_path="/World/Robot")
robot = Articulation(prim_paths_expr="/World/Robot")
```

Sensors:
```python
from isaacsim.sensors.camera import Camera
from isaacsim.sensors.physics import ContactSensor, IMUSensor
```

USD Operations:
```python
from pxr import UsdPhysics, UsdGeom, Gf
import omni.usd
stage = omni.usd.get_context().get_stage()
```

Always provide complete, executable Isaac Sim 5.0 code with proper extension imports."""

DEFAULT_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_INPUT_TOKENS = 2048

def to_single_turn(messages):
	lines = []
	for m in messages:
		role = m.get("role", "user").capitalize()
		lines.append(f"{role}: {m.get('content','')}")
	lines.append("Assistant:")
	return "\n".join(lines)

def call_endpoint(messages, parameters):
	start = time.time()
	
	# Debug logging
	print(f"🔍 DEBUG: Calling endpoint: {ENDPOINT_URL}")
	print(f"🔍 DEBUG: Headers: {HEADERS}")
	
	# Prefer single-turn first (matches your handler expectations)
	payload_inputs = {"inputs": to_single_turn(messages), "parameters": parameters}
	print(f"🔍 DEBUG: Payload: {payload_inputs}")
	
	resp = requests.post(ENDPOINT_URL, headers=HEADERS, json=payload_inputs, timeout=120)
	latency = time.time() - start

	print(f"🔍 DEBUG: Response status: {resp.status_code}")
	print(f"🔍 DEBUG: Response body: {resp.text}")

	if resp.status_code == 200:
		data = resp.json()
		text = data.get("generated_text") if isinstance(data, dict) else str(data)
		return text or "", latency

	# Fallback to messages for servers that support chat
	print(f"🔍 DEBUG: First attempt failed, trying messages format...")
	resp2 = requests.post(
		ENDPOINT_URL,
		headers=HEADERS,
		json={"messages": messages, "parameters": parameters},
		timeout=120,
	)
	latency = time.time() - start
	print(f"🔍 DEBUG: Fallback response status: {resp2.status_code}")
	print(f"🔍 DEBUG: Fallback response body: {resp2.text}")
	
	if resp2.status_code == 200:
		data = resp2.json()
		text = data.get("generated_text") if isinstance(data, dict) else str(data)
		return text or "", latency

	return f"HTTP {resp.status_code}/{resp2.status_code}: {resp.text or resp2.text}", latency

def build_messages(chat_history, user_input, system_prompt):
	messages = []
	if system_prompt and system_prompt.strip():
		messages.append({"role": "system", "content": system_prompt.strip()})
	else:
		messages.append({"role": "system", "content": SYSTEM_PROMPT_DEFAULT})
	for u, b in chat_history:
		if u:
			messages.append({"role": "user", "content": u})
		if b:
			messages.append({"role": "assistant", "content": b})
	if user_input:
		messages.append({"role": "user", "content": user_input})
	return messages

def trim_history(chat_history, max_turns=4):
	return chat_history[-max_turns:]

def to_chatbot_messages(chat_history):
	msgs = []
	for u, a in chat_history:
		if u:
			msgs.append({"role": "user", "content": u})
		if a:
			msgs.append({"role": "assistant", "content": a})
	return msgs

def respond(user_input, chat_history, temperature, top_p, max_new_tokens, max_input_tokens, system_prompt):
	if not user_input:
		return gr.update(value=""), chat_history, to_chatbot_messages(chat_history), gr.update(value="")

	chat_history = trim_history(chat_history, max_turns=4)

	params = {
		"max_new_tokens": int(max_new_tokens),
		"temperature": float(temperature),
		"top_p": float(top_p),
		"max_input_tokens": int(max_input_tokens),
	}
	messages = build_messages(chat_history, user_input, system_prompt)

	# Show the user message immediately
	chat_history = chat_history + [(user_input, None)]
	reply, latency = call_endpoint(messages, params)
	chat_history[-1] = (user_input, reply)

	# Clear input, update state, update chatbot (messages format), update latency
	return "", chat_history, to_chatbot_messages(chat_history), f"{latency:.2f}s"

def new_chat():
	return [], [], ""

custom_css = """
#app {max-width: 980px; margin: 0 auto;}
footer {visibility: hidden;}
.gradio-container {font-size: 14px;}
#controls .label-wrap {min-width: 160px;}
"""

with gr.Blocks(title="Qwen2.5‑Coder‑7B‑Instruct‑Omni1.1 (Isaac Sim Robotics Assistant)", css=custom_css) as demo:
	gr.Markdown("### Qwen2.5‑Coder‑7B‑Instruct‑Omni1.1\nChat with your Isaac Sim 5.0 robotics development assistant. This Space calls the TomBombadyl/Qwen2.5-Coder-7B-Instruct-Omni1.1 Inference Endpoint powered by NVIDIA L4 GPU.")

	# Chat at the top (messages format to avoid deprecation)
	chatbot = gr.Chatbot(height=520, show_copy_button=True, type="messages")

	# Input row
	with gr.Row():
		user_input = gr.Textbox(placeholder="Ask about Isaac Sim robotics, computer vision, sensors, simulation...", lines=2, scale=8)
		send_btn = gr.Button("Send", variant="primary", scale=1)
		new_btn = gr.Button("New chat", scale=1)

	# Right-aligned utility row
	with gr.Row():
		latency_lbl = gr.Label(value="", label="Latency")

	# Advanced settings (collapsed)
	with gr.Accordion("Advanced settings", open=False):
		with gr.Row(elem_id="controls"):
			temperature = gr.Slider(0.0, 1.5, value=0.2, step=0.05, label="temperature")
			top_p = gr.Slider(0.1, 1.0, value=0.7, step=0.01, label="top_p")
			max_new_tokens = gr.Slider(16, 1024, value=DEFAULT_MAX_NEW_TOKENS, step=128, label="max_new_tokens")
			max_input_tokens = gr.Slider(256, 8192, value=DEFAULT_MAX_INPUT_TOKENS, step=256, label="max_input_tokens")
		system_prompt = gr.Textbox(
			value=SYSTEM_PROMPT_DEFAULT,
			label="System prompt",
			lines=3,
			placeholder="Optional system instruction for the assistant",
		)

	chat_state = gr.State([])  # still store as list of (user, assistant) tuples

	# Return chatbot directly so responses render immediately
	send_btn.click(
		fn=respond,
		inputs=[user_input, chat_state, temperature, top_p, max_new_tokens, max_input_tokens, system_prompt],
		outputs=[user_input, chat_state, chatbot, latency_lbl],
	)
	user_input.submit(
		fn=respond,
		inputs=[user_input, chat_state, temperature, top_p, max_new_tokens, max_input_tokens, system_prompt],
		outputs=[user_input, chat_state, chatbot, latency_lbl],
	)

	# New chat resets state and chatbot
	new_btn.click(fn=new_chat, outputs=[chat_state, chatbot, latency_lbl])

# Enable queuing with defaults (avoid unsupported keyword args on older Gradio)
demo.queue()

if __name__ == "__main__":
	demo.launch()