import gradio as gr import torch from transformers import AutoModel, AutoTokenizer, AutoConfig import os import base64 import spaces import io from PIL import Image import numpy as np import yaml from pathlib import Path from globe import title, description, modelinfor, joinus, howto import uuid import tempfile import time import shutil import cv2 import re model_name = 'ucaslcl/GOT-OCR2_0' device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval().to(device) model.config.pad_token_id = tokenizer.eos_token_id UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() @spaces.GPU() def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None): if image is None: return "Error: No image provided", None, None unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") try: if isinstance(image, dict): composite_image = image.get("composite") if composite_image is not None: if isinstance(composite_image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)) elif isinstance(composite_image, Image.Image): composite_image.save(image_path) else: return "Error: Unsupported image format from ImageEditor", None, None else: return "Error: No composite image found in ImageEditor output", None, None elif isinstance(image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) elif isinstance(image, str): shutil.copy(image, image_path) else: return "Error: Unsupported image format", None, None if task == "Plain Text OCR": res = model.chat(tokenizer, image_path, ocr_type='ocr') return res, None, unique_id else: if task == "Format Text OCR": res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Box)": res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Color)": res = model.chat(tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) elif task == "Multi-crop OCR": res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Render Formatted OCR": res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content, unique_id else: return res, None, unique_id except Exception as e: return f"Error: {str(e)}", None, None finally: if os.path.exists(image_path): os.remove(image_path) def update_image_input(task): if task == "Fine-grained OCR (Color)": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_inputs(task): if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]: return [ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Box)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Color)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=False), gr.update(visible=True, choices=["red", "green", "blue"]), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) ] def parse_latex_output(res): # Split the input, preserving newlines and empty lines lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL) parsed_lines = [] in_latex = False latex_buffer = [] for line in lines: if line == '\n': if in_latex: latex_buffer.append(line) else: parsed_lines.append(line) continue line = line.strip() latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"'] contains_latex = any(re.search(pattern, line) for pattern in latex_patterns) if contains_latex: if not in_latex: in_latex = True latex_buffer = ['$$'] latex_buffer.append(line) else: if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) in_latex = False latex_buffer = [] parsed_lines.append(line) if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) return '$$\\$$\n'.join(parsed_lines) def ocr_demo(image, task, ocr_type, ocr_box, ocr_color): """ Main OCR demonstration function that processes images and returns results. Args: image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200) ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue Returns: tuple: (formatted_result, html_output) - formatted_result (str): Formatted OCR result text - html_output (str): HTML visualization if applicable """ res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color) if isinstance(res, str) and res.startswith("Error:"): return res, None res = res.replace("\\title", "\\title ") formatted_res = res # formatted_res = parse_latex_output(res) if html_content: encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') iframe_src = f"data:text/html;base64,{encoded_html}" iframe = f'' download_link = f'Download Full Result' return formatted_res, f"{download_link}
{iframe}" return formatted_res, None def cleanup_old_files(): current_time = time.time() for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: for file_path in Path(folder).glob('*'): if current_time - file_path.stat().st_mtime > 3600: # 1 hour file_path.unlink() with gr.Blocks(theme=gr.themes.Base()) as demo: with gr.Row(): gr.Markdown(title) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(description) with gr.Column(scale=1): with gr.Group(): gr.Markdown(modelinfor) gr.Markdown(joinus) with gr.Row(): with gr.Accordion("How to use Fine-grained OCR (Color)", open=False): with gr.Row(): gr.Image("res/image/howto_1.png", label="Select the Following Parameters") gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor") gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)") gr.Image("res/image/howto_4.png", label="Make a Box Around The Text") with gr.Row(): with gr.Group(): gr.Markdown(howto) with gr.Row(): with gr.Column(scale=1): with gr.Group(): image_input = gr.Image(type="filepath", label="Input Image") image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False) task_dropdown = gr.Dropdown( choices=[ "Plain Text OCR", "Format Text OCR", "Fine-grained OCR (Box)", "Fine-grained OCR (Color)", "Multi-crop OCR", "Render Formatted OCR" ], label="Select Task", value="Plain Text OCR" ) ocr_type_dropdown = gr.Dropdown( choices=["ocr", "format"], label="OCR Type", visible=False ) ocr_box_input = gr.Textbox( label="OCR Box (x1,y1,x2,y2)", placeholder="[100,100,200,200]", visible=False ) ocr_color_dropdown = gr.Dropdown( choices=["red", "green", "blue"], label="OCR Color", visible=False ) # with gr.Row(): # max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens") # no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size") submit_button = gr.Button("Process") editor_submit_button = gr.Button("Process Edited Image", visible=False) with gr.Column(scale=1): with gr.Group(): output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR") output_html = gr.HTML(label="🫴🏻📸GOT-OCR") task_dropdown.change( update_inputs, inputs=[task_dropdown], outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button] ) task_dropdown.change( update_image_input, inputs=[task_dropdown], outputs=[image_input, image_editor, editor_submit_button] ) submit_button.click( ocr_demo, inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) editor_submit_button.click( ocr_demo, inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) if __name__ == "__main__": cleanup_old_files() demo.launch(ssr_mode = False, mcp_server=True)