import gradio as gr import torch from transformers import AutoModel, AutoTokenizer, AutoConfig import os import base64 import spaces import io from PIL import Image import numpy as np import yaml from pathlib import Path from globe import title, description, modelinfor, joinus, howto import uuid import tempfile import time import shutil import cv2 import re import warnings # Check transformers version for compatibility try: import transformers transformers_version = transformers.__version__ print(f"Transformers version: {transformers_version}") # Check if we need to use legacy cache handling if transformers_version.startswith(('4.4', '4.5', '4.6')): USE_LEGACY_CACHE = True else: USE_LEGACY_CACHE = False except: USE_LEGACY_CACHE = False # Try to import spaces module for ZeroGPU compatibility try: import spaces SPACES_AVAILABLE = True except ImportError: SPACES_AVAILABLE = False # Create a dummy decorator for local development def dummy_gpu_decorator(func): return func spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})() # Suppress specific warnings that are known issues with GOT-OCR warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set") warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`") warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred") warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated") def global_cache_clear(): """Global cache clearing function to prevent DynamicCache issues""" try: # Clear torch cache import torch if torch.cuda.is_available(): torch.cuda.empty_cache() # Clear transformers cache try: from transformers.cache_utils import clear_cache clear_cache() except: pass # Clear any DynamicCache instances try: from transformers.cache_utils import DynamicCache if hasattr(DynamicCache, 'clear_all'): DynamicCache.clear_all() except: pass # Force garbage collection import gc gc.collect() except Exception as e: print(f"Global cache clear warning: {str(e)}") pass class ModelCacheManager: """ Manages model cache to prevent DynamicCache errors """ def __init__(self, model): self.model = model self._clear_all_caches() def _clear_all_caches(self): """Clear all possible caches including DynamicCache""" # Use global cache clearing first global_cache_clear() # Clear model cache if hasattr(self.model, 'clear_cache'): try: self.model.clear_cache() except: pass if hasattr(self.model, '_clear_cache'): try: self.model._clear_cache() except: pass # Clear any generation cache try: if hasattr(self.model, 'generation_config'): if hasattr(self.model.generation_config, 'clear_cache'): self.model.generation_config.clear_cache() except: pass # Clear any cache attributes that might cause DynamicCache issues cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values'] for attr in cache_attrs: if hasattr(self.model, attr): try: delattr(self.model, attr) except: pass # Clear transformers cache based on version try: if USE_LEGACY_CACHE: # Legacy cache clearing for older transformers versions from transformers import GenerationConfig if hasattr(GenerationConfig, 'clear_cache'): GenerationConfig.clear_cache() else: # New cache clearing for recent transformers versions try: from transformers.cache_utils import clear_cache clear_cache() except: pass # Also try the old method as fallback try: from transformers import GenerationConfig if hasattr(GenerationConfig, 'clear_cache'): GenerationConfig.clear_cache() except: pass # Try to clear DynamicCache specifically try: from transformers.cache_utils import DynamicCache # Clear any global DynamicCache instances if hasattr(DynamicCache, 'clear_all'): DynamicCache.clear_all() except: pass except: pass # Clear torch cache try: import torch if torch.cuda.is_available(): torch.cuda.empty_cache() except: pass # Force garbage collection try: import gc gc.collect() except: pass def safe_call(self, method_name, *args, **kwargs): """Safely call model methods with cache management""" try: # First attempt method = getattr(self.model, method_name) return method(*args, **kwargs) except AttributeError as e: if "get_max_length" in str(e): # Clear cache and retry self._clear_all_caches() try: return method(*args, **kwargs) except: # Try without any cache-related parameters kwargs_copy = kwargs.copy() # Remove any cache-related parameters that might cause issues for key in list(kwargs_copy.keys()): if 'cache' in key.lower(): del kwargs_copy[key] return method(*args, **kwargs_copy) else: raise e def direct_call(self, method_name, *args, **kwargs): """Direct call bypassing all cache mechanisms""" try: # Clear all caches first self._clear_all_caches() # Remove any cache-related parameters kwargs_copy = kwargs.copy() for key in list(kwargs_copy.keys()): if 'cache' in key.lower(): del kwargs_copy[key] # Make the call method = getattr(self.model, method_name) return method(*args, **kwargs_copy) except Exception as e: # If still failing, try the original safe_call as last resort return self.safe_call(method_name, *args, **kwargs) def legacy_call(self, method_name, *args, **kwargs): """Legacy call method for older transformers versions""" try: # For legacy versions, we need to handle cache differently kwargs_copy = kwargs.copy() # Remove any cache-related parameters for key in list(kwargs_copy.keys()): if 'cache' in key.lower(): del kwargs_copy[key] # Clear caches self._clear_all_caches() # Make the call method = getattr(self.model, method_name) return method(*args, **kwargs_copy) except Exception as e: # Fallback to direct call return self.direct_call(method_name, *args, **kwargs) def dynamic_cache_safe_call(self, method_name, *args, **kwargs): """Specialized method to handle DynamicCache errors""" try: # First, try to completely disable cache mechanisms original_attrs = {} # Store and remove cache-related attributes cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values'] for attr in cache_attrs: if hasattr(self.model, attr): original_attrs[attr] = getattr(self.model, attr) try: delattr(self.model, attr) except: pass # Clear all caches self._clear_all_caches() # Create minimal kwargs minimal_kwargs = {} essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color'] for key, value in kwargs.items(): if key in essential_params and 'cache' not in key.lower(): minimal_kwargs[key] = value # Make the call method = getattr(self.model, method_name) result = method(*args, **minimal_kwargs) # Restore original attributes for attr, value in original_attrs.items(): try: setattr(self.model, attr, value) except: pass return result except AttributeError as e: if "get_max_length" in str(e) and "DynamicCache" in str(e): # If DynamicCache error still occurs, try with no parameters try: method = getattr(self.model, method_name) return method(*args) except Exception as final_error: raise Exception(f"DynamicCache safe call failed: {str(final_error)}") else: raise e except Exception as e: raise e def initialize_model_safely(): """ Safely initialize the GOT-OCR model with proper error handling for ZeroGPU """ model_name = 'ucaslcl/GOT-OCR2_0' device = 'cuda' if torch.cuda.is_available() else 'cpu' try: # Initialize tokenizer with proper settings tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) # Set pad token properly if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) # Initialize model with proper settings to avoid warnings model = AutoModel.from_pretrained( 'ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True, pad_token_id=tokenizer.eos_token_id, torch_dtype=torch.float16 if device == 'cuda' else torch.float32 ) model = model.eval().to(device) model.config.pad_token_id = tokenizer.eos_token_id # Ensure the model has proper tokenizer settings if hasattr(model, 'config'): model.config.pad_token_id = tokenizer.eos_token_id model.config.eos_token_id = tokenizer.eos_token_id # Create cache manager cache_manager = ModelCacheManager(model) return model, tokenizer, cache_manager except Exception as e: print(f"Error initializing model: {str(e)}") # Fallback initialization try: tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModel.from_pretrained( 'ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True ) model = model.eval().to(device) # Create cache manager for fallback model cache_manager = ModelCacheManager(model) return model, tokenizer, cache_manager except Exception as fallback_error: raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}") # Initialize model, tokenizer, and cache manager model, tokenizer, cache_manager = initialize_model_safely() UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() def direct_model_call(model, method_name, *args, **kwargs): """ Direct model call without any cache-related parameters """ # Create a clean kwargs dict without any cache-related parameters clean_kwargs = {} for key, value in kwargs.items(): if 'cache' not in key.lower(): clean_kwargs[key] = value # Get the method and call it directly method = getattr(model, method_name) return method(*args, **clean_kwargs) def safe_model_call_with_dynamic_cache_fix(model, method_name, *args, **kwargs): """ Comprehensive safe model call that handles DynamicCache errors with multiple fallback strategies """ # Strategy 1: Try with complete cache clearing and minimal parameters try: # Clear all possible caches first try: if hasattr(model, 'clear_cache'): model.clear_cache() if hasattr(model, '_clear_cache'): model._clear_cache() # Clear transformers cache try: import torch if torch.cuda.is_available(): torch.cuda.empty_cache() except: pass # Clear any generation cache try: if hasattr(model, 'generation_config'): if hasattr(model.generation_config, 'clear_cache'): model.generation_config.clear_cache() except: pass except: pass # Create minimal kwargs with only essential parameters minimal_kwargs = {} essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color'] for key, value in kwargs.items(): if key in essential_params and 'cache' not in key.lower(): minimal_kwargs[key] = value method = getattr(model, method_name) return method(*args, **minimal_kwargs) except AttributeError as e: if "get_max_length" in str(e) and "DynamicCache" in str(e): print("DynamicCache error detected, applying comprehensive workaround...") # Strategy 2: Try with model cache manager try: return cache_manager.direct_call(method_name, *args, **kwargs) except Exception as cache_error: print(f"Cache manager failed: {str(cache_error)}") # Strategy 3: Try with legacy cache handling try: return cache_manager.legacy_call(method_name, *args, **kwargs) except Exception as legacy_error: print(f"Legacy cache handling failed: {str(legacy_error)}") # Strategy 4: Try with completely stripped parameters try: # Remove ALL parameters except the most basic ones stripped_kwargs = {} if 'ocr_type' in kwargs: stripped_kwargs['ocr_type'] = kwargs['ocr_type'] method = getattr(model, method_name) return method(*args, **stripped_kwargs) except Exception as stripped_error: print(f"Stripped parameters failed: {str(stripped_error)}") # Strategy 5: Try with monkey patching to bypass cache try: # Temporarily disable cache-related attributes original_attrs = {} # Store original attributes that might cause issues for attr_name in ['cache', '_cache', 'past_key_values', 'use_cache']: if hasattr(model, attr_name): original_attrs[attr_name] = getattr(model, attr_name) try: delattr(model, attr_name) except: pass # Try the call method = getattr(model, method_name) result = method(*args, **stripped_kwargs) # Restore original attributes for attr_name, value in original_attrs.items(): try: setattr(model, attr_name, value) except: pass return result except Exception as monkey_error: print(f"Monkey patching failed: {str(monkey_error)}") # Strategy 6: Final fallback - try with no parameters at all try: method = getattr(model, method_name) return method(*args) except Exception as final_error: raise Exception(f"All DynamicCache workarounds failed. Last error: {str(final_error)}") else: # Re-raise if it's not the DynamicCache error raise e except Exception as e: # Handle other errors raise e @spaces.GPU() def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None): """ Process image with OCR using ZeroGPU-compatible approach """ # Clear global cache at the start to prevent DynamicCache issues global_cache_clear() if image is None: return "Error: No image provided", None, None unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") try: if isinstance(image, dict): composite_image = image.get("composite") if composite_image is not None: if isinstance(composite_image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)) elif isinstance(composite_image, Image.Image): composite_image.save(image_path) else: return "Error: Unsupported image format from ImageEditor", None, None else: return "Error: No composite image found in ImageEditor output", None, None elif isinstance(image, np.ndarray): cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) elif isinstance(image, str): shutil.copy(image, image_path) else: return "Error: Unsupported image format", None, None # Use specialized DynamicCache-safe model calls try: if task == "Plain Text OCR": res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='ocr') return res, None, unique_id else: if task == "Format Text OCR": res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Box)": res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Color)": res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) elif task == "Multi-crop OCR": res = cache_manager.dynamic_cache_safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Render Formatted OCR": res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content, unique_id else: return res, None, unique_id except Exception as e: # If dynamic cache safe call fails, try with comprehensive workaround try: if task == "Plain Text OCR": res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='ocr') return res, None, unique_id else: if task == "Format Text OCR": res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Box)": res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Color)": res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) elif task == "Multi-crop OCR": res = safe_model_call_with_dynamic_cache_fix(model, 'chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Render Formatted OCR": res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content, unique_id else: return res, None, unique_id except Exception as fallback_error: # Final fallback to basic cache manager try: if task == "Plain Text OCR": res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='ocr') return res, None, unique_id else: if task == "Format Text OCR": res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Box)": res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) elif task == "Fine-grained OCR (Color)": res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) elif task == "Multi-crop OCR": res = cache_manager.safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif task == "Render Formatted OCR": res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) if os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() return res, html_content, unique_id else: return res, None, unique_id except Exception as final_error: return f"Error: {str(final_error)}", None, None except Exception as e: return f"Error: {str(e)}", None, None finally: if os.path.exists(image_path): os.remove(image_path) def update_image_input(task): if task == "Fine-grained OCR (Color)": return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) else: return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) def update_inputs(task): if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]: return [ gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Box)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) ] elif task == "Fine-grained OCR (Color)": return [ gr.update(visible=True, choices=["ocr", "format"]), gr.update(visible=False), gr.update(visible=True, choices=["red", "green", "blue"]), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) ] def parse_latex_output(res): # Split the input, preserving newlines and empty lines lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL) parsed_lines = [] in_latex = False latex_buffer = [] for line in lines: if line == '\n': if in_latex: latex_buffer.append(line) else: parsed_lines.append(line) continue line = line.strip() latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"'] contains_latex = any(re.search(pattern, line) for pattern in latex_patterns) if contains_latex: if not in_latex: in_latex = True latex_buffer = ['$$'] latex_buffer.append(line) else: if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) in_latex = False latex_buffer = [] parsed_lines.append(line) if in_latex: latex_buffer.append('$$') parsed_lines.extend(latex_buffer) return '$$\\$$\n'.join(parsed_lines) def ocr_demo(image, task, ocr_type, ocr_box, ocr_color): """ Main OCR demonstration function that processes images and returns results. Args: image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200) ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue Returns: tuple: (formatted_result, html_output) - formatted_result (str): Formatted OCR result text - html_output (str): HTML visualization if applicable """ res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color) if isinstance(res, str) and res.startswith("Error:"): return res, None res = res.replace("\\title", "\\title ") formatted_res = res # formatted_res = parse_latex_output(res) if html_content: encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') iframe_src = f"data:text/html;base64,{encoded_html}" iframe = f'' download_link = f'Download Full Result' return formatted_res, f"{download_link}
{iframe}" return formatted_res, None def cleanup_old_files(): current_time = time.time() for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: for file_path in Path(folder).glob('*'): if current_time - file_path.stat().st_mtime > 3600: # 1 hour file_path.unlink() with gr.Blocks(theme=gr.themes.Base()) as demo: with gr.Row(): gr.Markdown(title) with gr.Row(): with gr.Column(scale=1): with gr.Group(): gr.Markdown(description) with gr.Column(scale=1): with gr.Group(): gr.Markdown(modelinfor) gr.Markdown(joinus) with gr.Row(): with gr.Accordion("How to use Fine-grained OCR (Color)", open=False): with gr.Row(): gr.Image("res/image/howto_1.png", label="Select the Following Parameters") gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor") gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)") gr.Image("res/image/howto_4.png", label="Make a Box Around The Text") with gr.Row(): with gr.Group(): gr.Markdown(howto) with gr.Row(): with gr.Column(scale=1): with gr.Group(): image_input = gr.Image(type="filepath", label="Input Image") image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False) task_dropdown = gr.Dropdown( choices=[ "Plain Text OCR", "Format Text OCR", "Fine-grained OCR (Box)", "Fine-grained OCR (Color)", "Multi-crop OCR", "Render Formatted OCR" ], label="Select Task", value="Plain Text OCR" ) ocr_type_dropdown = gr.Dropdown( choices=["ocr", "format"], label="OCR Type", visible=False ) ocr_box_input = gr.Textbox( label="OCR Box (x1,y1,x2,y2)", placeholder="[100,100,200,200]", visible=False ) ocr_color_dropdown = gr.Dropdown( choices=["red", "green", "blue"], label="OCR Color", visible=False ) # with gr.Row(): # max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens") # no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size") submit_button = gr.Button("Process") editor_submit_button = gr.Button("Process Edited Image", visible=False) with gr.Column(scale=1): with gr.Group(): output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR") output_html = gr.HTML(label="🫴🏻📸GOT-OCR") task_dropdown.change( update_inputs, inputs=[task_dropdown], outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button] ) task_dropdown.change( update_image_input, inputs=[task_dropdown], outputs=[image_input, image_editor, editor_submit_button] ) submit_button.click( ocr_demo, inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) editor_submit_button.click( ocr_demo, inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], outputs=[output_markdown, output_html] ) if __name__ == "__main__": cleanup_old_files() demo.launch(ssr_mode = False, mcp_server=True)