import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os
import base64
import spaces
import io
from PIL import Image
import numpy as np
import yaml
from pathlib import Path
from globe import title, description, modelinfor, joinus, howto
import uuid
import tempfile
import time
import shutil
import cv2
import re
import warnings
# Check transformers version for compatibility
try:
import transformers
transformers_version = transformers.__version__
print(f"Transformers version: {transformers_version}")
# Check if we need to use legacy cache handling
if transformers_version.startswith(('4.4', '4.5', '4.6')):
USE_LEGACY_CACHE = True
else:
USE_LEGACY_CACHE = False
except:
USE_LEGACY_CACHE = False
# Try to import spaces module for ZeroGPU compatibility
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
# Create a dummy decorator for local development
def dummy_gpu_decorator(func):
return func
spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})()
# Suppress specific warnings that are known issues with GOT-OCR
warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set")
warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`")
warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred")
warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated")
def global_cache_clear():
"""Global cache clearing function to prevent DynamicCache issues"""
try:
# Clear torch cache
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Clear transformers cache
try:
from transformers.cache_utils import clear_cache
clear_cache()
except:
pass
# Clear any DynamicCache instances
try:
from transformers.cache_utils import DynamicCache
if hasattr(DynamicCache, 'clear_all'):
DynamicCache.clear_all()
except:
pass
# Force garbage collection
import gc
gc.collect()
except Exception as e:
print(f"Global cache clear warning: {str(e)}")
pass
class ModelCacheManager:
"""
Manages model cache to prevent DynamicCache errors
"""
def __init__(self, model):
self.model = model
self._clear_all_caches()
def _clear_all_caches(self):
"""Clear all possible caches including DynamicCache"""
# Use global cache clearing first
global_cache_clear()
# Clear model cache
if hasattr(self.model, 'clear_cache'):
try:
self.model.clear_cache()
except:
pass
if hasattr(self.model, '_clear_cache'):
try:
self.model._clear_cache()
except:
pass
# Clear any generation cache
try:
if hasattr(self.model, 'generation_config'):
if hasattr(self.model.generation_config, 'clear_cache'):
self.model.generation_config.clear_cache()
except:
pass
# Clear any cache attributes that might cause DynamicCache issues
cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values']
for attr in cache_attrs:
if hasattr(self.model, attr):
try:
delattr(self.model, attr)
except:
pass
# Clear transformers cache based on version
try:
if USE_LEGACY_CACHE:
# Legacy cache clearing for older transformers versions
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
else:
# New cache clearing for recent transformers versions
try:
from transformers.cache_utils import clear_cache
clear_cache()
except:
pass
# Also try the old method as fallback
try:
from transformers import GenerationConfig
if hasattr(GenerationConfig, 'clear_cache'):
GenerationConfig.clear_cache()
except:
pass
# Try to clear DynamicCache specifically
try:
from transformers.cache_utils import DynamicCache
# Clear any global DynamicCache instances
if hasattr(DynamicCache, 'clear_all'):
DynamicCache.clear_all()
except:
pass
except:
pass
# Clear torch cache
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
pass
# Force garbage collection
try:
import gc
gc.collect()
except:
pass
def safe_call(self, method_name, *args, **kwargs):
"""Safely call model methods with cache management"""
try:
# First attempt
method = getattr(self.model, method_name)
return method(*args, **kwargs)
except AttributeError as e:
if "get_max_length" in str(e):
# Clear cache and retry
self._clear_all_caches()
try:
return method(*args, **kwargs)
except:
# Try without any cache-related parameters
kwargs_copy = kwargs.copy()
# Remove any cache-related parameters that might cause issues
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
return method(*args, **kwargs_copy)
else:
raise e
def direct_call(self, method_name, *args, **kwargs):
"""Direct call bypassing all cache mechanisms"""
try:
# Clear all caches first
self._clear_all_caches()
# Remove any cache-related parameters
kwargs_copy = kwargs.copy()
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
# Make the call
method = getattr(self.model, method_name)
return method(*args, **kwargs_copy)
except Exception as e:
# If still failing, try the original safe_call as last resort
return self.safe_call(method_name, *args, **kwargs)
def legacy_call(self, method_name, *args, **kwargs):
"""Legacy call method for older transformers versions"""
try:
# For legacy versions, we need to handle cache differently
kwargs_copy = kwargs.copy()
# Remove any cache-related parameters
for key in list(kwargs_copy.keys()):
if 'cache' in key.lower():
del kwargs_copy[key]
# Clear caches
self._clear_all_caches()
# Make the call
method = getattr(self.model, method_name)
return method(*args, **kwargs_copy)
except Exception as e:
# Fallback to direct call
return self.direct_call(method_name, *args, **kwargs)
def dynamic_cache_safe_call(self, method_name, *args, **kwargs):
"""Specialized method to handle DynamicCache errors"""
try:
# First, try to completely disable cache mechanisms
original_attrs = {}
# Store and remove cache-related attributes
cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values']
for attr in cache_attrs:
if hasattr(self.model, attr):
original_attrs[attr] = getattr(self.model, attr)
try:
delattr(self.model, attr)
except:
pass
# Clear all caches
self._clear_all_caches()
# Create minimal kwargs
minimal_kwargs = {}
essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color']
for key, value in kwargs.items():
if key in essential_params and 'cache' not in key.lower():
minimal_kwargs[key] = value
# Make the call
method = getattr(self.model, method_name)
result = method(*args, **minimal_kwargs)
# Restore original attributes
for attr, value in original_attrs.items():
try:
setattr(self.model, attr, value)
except:
pass
return result
except AttributeError as e:
if "get_max_length" in str(e) and "DynamicCache" in str(e):
# If DynamicCache error still occurs, try with no parameters
try:
method = getattr(self.model, method_name)
return method(*args)
except Exception as final_error:
raise Exception(f"DynamicCache safe call failed: {str(final_error)}")
else:
raise e
except Exception as e:
raise e
def initialize_model_safely():
"""
Safely initialize the GOT-OCR model with proper error handling for ZeroGPU
"""
model_name = 'ucaslcl/GOT-OCR2_0'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
try:
# Initialize tokenizer with proper settings
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
# Set pad token properly
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
# Initialize model with proper settings to avoid warnings
model = AutoModel.from_pretrained(
'ucaslcl/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device,
use_safetensors=True,
pad_token_id=tokenizer.eos_token_id,
torch_dtype=torch.float16 if device == 'cuda' else torch.float32
)
model = model.eval().to(device)
model.config.pad_token_id = tokenizer.eos_token_id
# Ensure the model has proper tokenizer settings
if hasattr(model, 'config'):
model.config.pad_token_id = tokenizer.eos_token_id
model.config.eos_token_id = tokenizer.eos_token_id
# Create cache manager
cache_manager = ModelCacheManager(model)
return model, tokenizer, cache_manager
except Exception as e:
print(f"Error initializing model: {str(e)}")
# Fallback initialization
try:
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModel.from_pretrained(
'ucaslcl/GOT-OCR2_0',
trust_remote_code=True,
low_cpu_mem_usage=True,
device_map=device,
use_safetensors=True
)
model = model.eval().to(device)
# Create cache manager for fallback model
cache_manager = ModelCacheManager(model)
return model, tokenizer, cache_manager
except Exception as fallback_error:
raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}")
# Initialize model, tokenizer, and cache manager
model, tokenizer, cache_manager = initialize_model_safely()
UPLOAD_FOLDER = "./uploads"
RESULTS_FOLDER = "./results"
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def image_to_base64(image):
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def direct_model_call(model, method_name, *args, **kwargs):
"""
Direct model call without any cache-related parameters
"""
# Create a clean kwargs dict without any cache-related parameters
clean_kwargs = {}
for key, value in kwargs.items():
if 'cache' not in key.lower():
clean_kwargs[key] = value
# Get the method and call it directly
method = getattr(model, method_name)
return method(*args, **clean_kwargs)
def safe_model_call_with_dynamic_cache_fix(model, method_name, *args, **kwargs):
"""
Comprehensive safe model call that handles DynamicCache errors with multiple fallback strategies
"""
# Strategy 1: Try with complete cache clearing and minimal parameters
try:
# Clear all possible caches first
try:
if hasattr(model, 'clear_cache'):
model.clear_cache()
if hasattr(model, '_clear_cache'):
model._clear_cache()
# Clear transformers cache
try:
import torch
if torch.cuda.is_available():
torch.cuda.empty_cache()
except:
pass
# Clear any generation cache
try:
if hasattr(model, 'generation_config'):
if hasattr(model.generation_config, 'clear_cache'):
model.generation_config.clear_cache()
except:
pass
except:
pass
# Create minimal kwargs with only essential parameters
minimal_kwargs = {}
essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color']
for key, value in kwargs.items():
if key in essential_params and 'cache' not in key.lower():
minimal_kwargs[key] = value
method = getattr(model, method_name)
return method(*args, **minimal_kwargs)
except AttributeError as e:
if "get_max_length" in str(e) and "DynamicCache" in str(e):
print("DynamicCache error detected, applying comprehensive workaround...")
# Strategy 2: Try with model cache manager
try:
return cache_manager.direct_call(method_name, *args, **kwargs)
except Exception as cache_error:
print(f"Cache manager failed: {str(cache_error)}")
# Strategy 3: Try with legacy cache handling
try:
return cache_manager.legacy_call(method_name, *args, **kwargs)
except Exception as legacy_error:
print(f"Legacy cache handling failed: {str(legacy_error)}")
# Strategy 4: Try with completely stripped parameters
try:
# Remove ALL parameters except the most basic ones
stripped_kwargs = {}
if 'ocr_type' in kwargs:
stripped_kwargs['ocr_type'] = kwargs['ocr_type']
method = getattr(model, method_name)
return method(*args, **stripped_kwargs)
except Exception as stripped_error:
print(f"Stripped parameters failed: {str(stripped_error)}")
# Strategy 5: Try with monkey patching to bypass cache
try:
# Temporarily disable cache-related attributes
original_attrs = {}
# Store original attributes that might cause issues
for attr_name in ['cache', '_cache', 'past_key_values', 'use_cache']:
if hasattr(model, attr_name):
original_attrs[attr_name] = getattr(model, attr_name)
try:
delattr(model, attr_name)
except:
pass
# Try the call
method = getattr(model, method_name)
result = method(*args, **stripped_kwargs)
# Restore original attributes
for attr_name, value in original_attrs.items():
try:
setattr(model, attr_name, value)
except:
pass
return result
except Exception as monkey_error:
print(f"Monkey patching failed: {str(monkey_error)}")
# Strategy 6: Final fallback - try with no parameters at all
try:
method = getattr(model, method_name)
return method(*args)
except Exception as final_error:
raise Exception(f"All DynamicCache workarounds failed. Last error: {str(final_error)}")
else:
# Re-raise if it's not the DynamicCache error
raise e
except Exception as e:
# Handle other errors
raise e
@spaces.GPU()
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None):
"""
Process image with OCR using ZeroGPU-compatible approach
"""
# Clear global cache at the start to prevent DynamicCache issues
global_cache_clear()
if image is None:
return "Error: No image provided", None, None
unique_id = str(uuid.uuid4())
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
try:
if isinstance(image, dict):
composite_image = image.get("composite")
if composite_image is not None:
if isinstance(composite_image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR))
elif isinstance(composite_image, Image.Image):
composite_image.save(image_path)
else:
return "Error: Unsupported image format from ImageEditor", None, None
else:
return "Error: No composite image found in ImageEditor output", None, None
elif isinstance(image, np.ndarray):
cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
elif isinstance(image, str):
shutil.copy(image, image_path)
else:
return "Error: Unsupported image format", None, None
# Use specialized DynamicCache-safe model calls
try:
if task == "Plain Text OCR":
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Box)":
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Color)":
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
elif task == "Multi-crop OCR":
res = cache_manager.dynamic_cache_safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Render Formatted OCR":
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
except Exception as e:
# If dynamic cache safe call fails, try with comprehensive workaround
try:
if task == "Plain Text OCR":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Box)":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Color)":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
elif task == "Multi-crop OCR":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Render Formatted OCR":
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
except Exception as fallback_error:
# Final fallback to basic cache manager
try:
if task == "Plain Text OCR":
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='ocr')
return res, None, unique_id
else:
if task == "Format Text OCR":
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Box)":
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path)
elif task == "Fine-grained OCR (Color)":
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path)
elif task == "Multi-crop OCR":
res = cache_manager.safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
elif task == "Render Formatted OCR":
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
if os.path.exists(result_path):
with open(result_path, 'r') as f:
html_content = f.read()
return res, html_content, unique_id
else:
return res, None, unique_id
except Exception as final_error:
return f"Error: {str(final_error)}", None, None
except Exception as e:
return f"Error: {str(e)}", None, None
finally:
if os.path.exists(image_path):
os.remove(image_path)
def update_image_input(task):
if task == "Fine-grained OCR (Color)":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
def update_inputs(task):
if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]:
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Box)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False)
]
elif task == "Fine-grained OCR (Color)":
return [
gr.update(visible=True, choices=["ocr", "format"]),
gr.update(visible=False),
gr.update(visible=True, choices=["red", "green", "blue"]),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True)
]
def parse_latex_output(res):
# Split the input, preserving newlines and empty lines
lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL)
parsed_lines = []
in_latex = False
latex_buffer = []
for line in lines:
if line == '\n':
if in_latex:
latex_buffer.append(line)
else:
parsed_lines.append(line)
continue
line = line.strip()
latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"']
contains_latex = any(re.search(pattern, line) for pattern in latex_patterns)
if contains_latex:
if not in_latex:
in_latex = True
latex_buffer = ['$$']
latex_buffer.append(line)
else:
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
in_latex = False
latex_buffer = []
parsed_lines.append(line)
if in_latex:
latex_buffer.append('$$')
parsed_lines.extend(latex_buffer)
return '$$\\$$\n'.join(parsed_lines)
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color):
"""
Main OCR demonstration function that processes images and returns results.
Args:
image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object
task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting
ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure
ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200)
ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue
Returns:
tuple: (formatted_result, html_output)
- formatted_result (str): Formatted OCR result text
- html_output (str): HTML visualization if applicable
"""
res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color)
if isinstance(res, str) and res.startswith("Error:"):
return res, None
res = res.replace("\\title", "\\title ")
formatted_res = res
# formatted_res = parse_latex_output(res)
if html_content:
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
iframe_src = f"data:text/html;base64,{encoded_html}"
iframe = f''
download_link = f'Download Full Result'
return formatted_res, f"{download_link}
{iframe}"
return formatted_res, None
def cleanup_old_files():
current_time = time.time()
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
for file_path in Path(folder).glob('*'):
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
file_path.unlink()
with gr.Blocks(theme=gr.themes.Base()) as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(description)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(modelinfor)
gr.Markdown(joinus)
with gr.Row():
with gr.Accordion("How to use Fine-grained OCR (Color)", open=False):
with gr.Row():
gr.Image("res/image/howto_1.png", label="Select the Following Parameters")
gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor")
gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)")
gr.Image("res/image/howto_4.png", label="Make a Box Around The Text")
with gr.Row():
with gr.Group():
gr.Markdown(howto)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
image_input = gr.Image(type="filepath", label="Input Image")
image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False)
task_dropdown = gr.Dropdown(
choices=[
"Plain Text OCR",
"Format Text OCR",
"Fine-grained OCR (Box)",
"Fine-grained OCR (Color)",
"Multi-crop OCR",
"Render Formatted OCR"
],
label="Select Task",
value="Plain Text OCR"
)
ocr_type_dropdown = gr.Dropdown(
choices=["ocr", "format"],
label="OCR Type",
visible=False
)
ocr_box_input = gr.Textbox(
label="OCR Box (x1,y1,x2,y2)",
placeholder="[100,100,200,200]",
visible=False
)
ocr_color_dropdown = gr.Dropdown(
choices=["red", "green", "blue"],
label="OCR Color",
visible=False
)
# with gr.Row():
# max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens")
# no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size")
submit_button = gr.Button("Process")
editor_submit_button = gr.Button("Process Edited Image", visible=False)
with gr.Column(scale=1):
with gr.Group():
output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR")
output_html = gr.HTML(label="🫴🏻📸GOT-OCR")
task_dropdown.change(
update_inputs,
inputs=[task_dropdown],
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button]
)
task_dropdown.change(
update_image_input,
inputs=[task_dropdown],
outputs=[image_input, image_editor, editor_submit_button]
)
submit_button.click(
ocr_demo,
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
editor_submit_button.click(
ocr_demo,
inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown],
outputs=[output_markdown, output_html]
)
if __name__ == "__main__":
cleanup_old_files()
demo.launch(ssr_mode = False, mcp_server=True)