import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import re
import json
from typing import List, Dict, Any, Optional
import logging
import spaces
import os
import sys
import requests
import accelerate
# Set torch to use float16 on GPU for better performance, float32 on CPU for compatibility
if torch.cuda.is_available():
torch.set_default_dtype(torch.float16)
else:
torch.set_default_dtype(torch.float32)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
MAIN_MODEL_ID = "Tonic/petite-elle-L-aime-3-sft"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = None
tokenizer = None
DEFAULT_SYSTEM_PROMPT = "Tu es TonicIA, un assistant francophone rigoureux et bienveillant."
title = "# 🙋🏻♂️Welcome to 🌟Tonic's Petite Elle L'Aime 3"
description = "A fine-tuned version of SmolLM3-3B optimized for French conversations."
presentation1 = """
### 🎯 Features
- **Multilingual Support**: English, French, Italian, Portuguese, Chinese, Arabic
- **Full Fine-Tuned Model**: Maximum performance and quality with full precision
- **Interactive Chat Interface**: Real-time conversation with the model
- **Customizable System Prompt**: Define the assistant's personality and behavior
- **Thinking Mode**: Enable reasoning mode with thinking tags
- **Tool Calling**: Support for function calling with XML and Python tools
"""
presentation2 = """### 🎯 Fonctionnalités
* **Support multilingue** : Anglais, Français, Italien, Portugais, Chinois, Arabe
* **Modèle complet fine-tuné** : Performance et qualité maximales avec précision complète
* **Interface de chat interactive** : Conversation en temps réel avec le modèle
* **Invite système personnalisable** : Définissez la personnalité et le comportement de l'assistant
* **Mode Réflexion** : Activez le mode raisonnement avec des balises de réflexion
* **Appel d'outils** : Support pour l'appel de fonctions avec XML et Python
"""
joinus = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
# Default tool definition for demonstration
DEFAULT_TOOLS = [
{
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
}
}
},
{
"name": "calculate",
"description": "Perform mathematical calculations",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "Mathematical expression to evaluate"
}
}
}
}
]
def download_chat_template():
"""Download the chat template from the main repository"""
try:
chat_template_url = f"https://huggingface.co/{MAIN_MODEL_ID}/raw/main/chat_template.jinja"
logger.info(f"Downloading chat template from {chat_template_url}")
response = requests.get(chat_template_url, timeout=30)
response.raise_for_status()
chat_template_content = response.text
logger.info("Chat template downloaded successfully")
return chat_template_content
except requests.exceptions.RequestException as e:
logger.error(f"Error downloading chat template: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error downloading chat template: {e}")
return None
def load_model():
"""Load the full fine-tuned model and tokenizer"""
global model, tokenizer
try:
logger.info(f"Loading tokenizer from {MAIN_MODEL_ID}")
# tokenizer = AutoTokenizer.from_pretrained(MAIN_MODEL_ID, subfolder="int4")
tokenizer = AutoTokenizer.from_pretrained(MAIN_MODEL_ID)
# chat_template = download_chat_template()
# if chat_template:
# tokenizer.chat_template = chat_template
# logger.info("Chat template downloaded and set successfully")
# logger.info(f"Loading full fine-tuned model from {MAIN_MODEL_ID}")
# Load the full fine-tuned model with optimized settings
model_kwargs = {
"device_map": "auto" if DEVICE == "cuda" else "cpu",
"torch_dtype": torch.bfloat16 if DEVICE == "cuda" else torch.float32, # Use float16 on GPU, float32 on CPU
"trust_remote_code": True,
"low_cpu_mem_usage": True,
# "attn_implementation": "flash_attention_2" if DEVICE == "cuda" else "eager"
}
logger.info(f"Model loading parameters: {model_kwargs}")
# model = AutoModelForCausalLM.from_pretrained(MAIN_MODEL_ID, subfolder="int4", **model_kwargs)
model = AutoModelForCausalLM.from_pretrained(MAIN_MODEL_ID, **model_kwargs)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("Full fine-tuned model loaded successfully")
return True
except Exception as e:
logger.error(f"Error loading model: {e}")
logger.error(f"Model config: {model.config if model else 'Model not loaded'}")
return False
def create_prompt(system_message, user_message, enable_thinking=True, tools=None, use_xml_tools=True):
"""Create prompt using the model's chat template with SmolLM3 features"""
try:
formatted_messages = []
if system_message and system_message.strip():
# Check if thinking flags are already present
has_think_flag = "/think" in system_message
has_no_think_flag = "/no_think" in system_message
# Add thinking flag to system message if needed
if not enable_thinking and not has_no_think_flag:
system_message += "/no_think"
elif enable_thinking and not has_think_flag and not has_no_think_flag:
system_message += "/think"
formatted_messages.append({"role": "system", "content": system_message})
formatted_messages.append({"role": "user", "content": user_message})
# Apply chat template with SmolLM3 features
template_kwargs = {
"tokenize": False,
"add_generation_prompt": True,
"enable_thinking": enable_thinking
}
# Add tool calling if tools are provided
if tools and len(tools) > 0:
if use_xml_tools:
template_kwargs["xml_tools"] = tools
else:
template_kwargs["python_tools"] = tools
prompt = tokenizer.apply_chat_template(formatted_messages, **template_kwargs)
return prompt
except Exception as e:
logger.error(f"Error creating prompt: {e}")
return ""
@spaces.GPU()
def generate_response(message, history, system_message, max_tokens, temperature, top_p, repetition_penalty, do_sample, enable_thinking=True, tools=None, use_xml_tools=True):
"""Generate response using the full fine-tuned model with SmolLM3 features"""
global model, tokenizer
if model is None or tokenizer is None:
return "Error: Model not loaded. Please wait for the model to load."
# Parse tools from string if provided
parsed_tools = None
if tools and tools.strip():
try:
parsed_tools = json.loads(tools)
except json.JSONDecodeError as e:
logger.error(f"Error parsing tools JSON: {e}")
return "Error: Invalid tool definition JSON format."
full_prompt = create_prompt(system_message, message, enable_thinking, parsed_tools, use_xml_tools)
if not full_prompt:
return "Error: Failed to create prompt."
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True)
logger.info(f"Input tensor shapes: {[(k, v.shape, v.dtype) for k, v in inputs.items()]}")
if DEVICE == "cuda":
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
output_ids = model.generate(
inputs['input_ids'],
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
attention_mask=inputs['attention_mask'],
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
# cache_implementation="static"
)
# First decode WITH special tokens to find markers
response_with_tokens = tokenizer.decode(output_ids[0], skip_special_tokens=False)
# Debug: Print the full raw response with tokens
# logger.info(f"=== FULL RAW RESPONSE WITH TOKENS DEBUG ===")
# logger.info(f"Raw response with tokens length: {len(response_with_tokens)}")
# logger.info(f"Raw response with tokens: {repr(response_with_tokens)}")
# More robust response extraction - look for assistant marker
# logger.info(f"Looking for assistant marker in response...")
if "<|im_start|>assistant" in response_with_tokens:
# logger.info(f"Found assistant marker in response")
# Find the start of assistant response
assistant_start = response_with_tokens.find("<|im_start|>assistant")
# logger.info(f"Assistant marker found at position: {assistant_start}")
if assistant_start != -1:
# Find the end of the assistant marker
marker_end = response_with_tokens.find("\n", assistant_start)
# logger.info(f"Marker end found at position: {marker_end}")
if marker_end != -1:
assistant_response = response_with_tokens[marker_end + 1:].strip()
# logger.info(f"Using marker-based extraction")
else:
assistant_response = response_with_tokens[assistant_start + len("<|im_start|>assistant"):].strip()
# logger.info(f"Using fallback marker extraction")
else:
# Fallback to prompt-based extraction
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
assistant_response = response[len(full_prompt):].strip()
# logger.info(f"Using prompt-based extraction (marker not found)")
else:
# Fallback to original method
# logger.info(f"No assistant marker found, using prompt-based extraction")
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
assistant_response = response[len(full_prompt):].strip()
# Clean up any remaining special tokens
assistant_response = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', assistant_response, flags=re.DOTALL)
assistant_response = re.sub(r'<\|im_start\|>', '', assistant_response)
assistant_response = re.sub(r'<\|im_end\|>', '', assistant_response)
# Debug: Print the extracted assistant response after cleanup
# logger.info(f"=== EXTRACTED ASSISTANT RESPONSE AFTER CLEANUP DEBUG ===")
# logger.info(f"Extracted response length: {len(assistant_response)}")
# logger.info(f"Extracted response: {repr(assistant_response)}")
# Debug: Print before cleanup
# logger.info(f"=== BEFORE CLEANUP DEBUG ===")
# logger.info(f"Before cleanup length: {len(assistant_response)}")
# logger.info(f"Before cleanup: {repr(assistant_response)}")
assistant_response = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', assistant_response, flags=re.DOTALL)
# Debug: Print after first cleanup
# logger.info(f"=== AFTER FIRST CLEANUP DEBUG ===")
# logger.info(f"After first cleanup length: {len(assistant_response)}")
# logger.info(f"After first cleanup: {repr(assistant_response)}")
if not enable_thinking:
assistant_response = re.sub(r'.*?', '', assistant_response, flags=re.DOTALL)
# Debug: Print after thinking cleanup
# logger.info(f"=== AFTER THINKING CLEANUP DEBUG ===")
# logger.info(f"After thinking cleanup length: {len(assistant_response)}")
# logger.info(f"After thinking cleanup: {repr(assistant_response)}")
# Debug: Print before tool call handling
# logger.info(f"=== BEFORE TOOL CALL HANDLING DEBUG ===")
# logger.info(f"Before tool call handling length: {len(assistant_response)}")
# logger.info(f"Before tool call handling: {repr(assistant_response)}")
# Handle tool calls if present
if parsed_tools and ("" in assistant_response or "" in assistant_response):
if "" in assistant_response:
tool_call_match = re.search(r'(.*?)', assistant_response, re.DOTALL)
if tool_call_match:
tool_call = tool_call_match.group(1)
assistant_response += f"\n\n🔧 Tool Call Detected: {tool_call}\n\nNote: This is a simulated tool call. In a real scenario, the tool would be executed and its output would be used to generate a final response."
elif "" in assistant_response:
code_match = re.search(r'(.*?)
', assistant_response, re.DOTALL)
if code_match:
code_call = code_match.group(1)
assistant_response += f"\n\n🐍 Python Tool Call: {code_call}\n\nNote: This is a simulated Python tool call. In a real scenario, the function would be executed and its output would be used to generate a final response."
# Debug: Print after tool call handling
# logger.info(f"=== AFTER TOOL CALL HANDLING DEBUG ===")
# logger.info(f"After tool call handling length: {len(assistant_response)}")
# logger.info(f"After tool call handling: {repr(assistant_response)}")
assistant_response = assistant_response.strip()
# Debug: Print final response
# logger.info(f"=== FINAL RESPONSE DEBUG ===")
# logger.info(f"Final response length: {len(assistant_response)}")
# logger.info(f"Final response: {repr(assistant_response)}")
# logger.info(f"=== END DEBUG ===")
return assistant_response
def user(user_message, history):
"""Add user message to history"""
if history is None:
history = []
return "", history + [{"role": "user", "content": user_message}]
def bot(history, system_prompt, max_length, temperature, top_p, repetition_penalty, advanced_checkbox, enable_thinking, tools, use_xml_tools, use_tools):
"""Generate bot response"""
if not history:
return history
user_message = history[-1]["content"] if history else ""
do_sample = advanced_checkbox
tools_to_use = tools if use_tools else None
bot_message = generate_response(
user_message, history, system_prompt, max_length, temperature, top_p, repetition_penalty,
do_sample, enable_thinking, tools_to_use, use_xml_tools
)
history.append({"role": "assistant", "content": bot_message})
return history
# Load model on startup
logger.info("Starting model loading process with full fine-tuned model...")
load_model()
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(presentation1)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(presentation2)
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
gr.Markdown(joinus)
with gr.Column(scale=1):
pass # Empty column for balance
with gr.Row():
with gr.Column(scale=2):
system_prompt = gr.TextArea(
label="📑 Contexte",
placeholder="Tu es TonicIA, un assistant francophone rigoureux et bienveillant.",
lines=5,
value=DEFAULT_SYSTEM_PROMPT
)
user_input = gr.TextArea(
label="🤷🏻♂️ Message",
placeholder="Bonjour je m'appel Tonic!",
lines=2
)
advanced_checkbox = gr.Checkbox(label="🧪 Advanced Settings", value=False)
with gr.Column(visible=False) as advanced_settings:
max_length = gr.Slider(
label="📏 Longueur de la réponse",
minimum=10,
maximum=9000, # maximum=32768,
value=1256,
step=1
)
temperature = gr.Slider(
label="🌡️ Température",
minimum=0.01,
maximum=1.0,
value=0.6, # Updated to SmolLM3 recommended
step=0.01
)
top_p = gr.Slider(
label="⚛️ Top-p (Echantillonnage)",
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.01
)
repetition_penalty = gr.Slider(
label="🔄 Pénalité de Répétition",
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.01
)
enable_thinking = gr.Checkbox(label="Mode Réflexion", value=True)
use_tools = gr.Checkbox(label="🔧 Enable Tool Calling", value=False)
use_xml_tools = gr.Checkbox(label="📋 Use XML Tools (vs Python)", value=True)
with gr.Column(visible=False) as tool_options:
tools = gr.Code(
label="Tool Definition (JSON)",
value=json.dumps(DEFAULT_TOOLS, indent=2),
lines=15,
language="json"
)
generate_button = gr.Button(value="🤖 Petite Elle L'Aime 3")
with gr.Column(scale=2):
chatbot = gr.Chatbot(label="🤖 Petite Elle L'Aime 3", type="messages", value=[])
generate_button.click(
user,
[user_input, chatbot],
[user_input, chatbot],
queue=False
).then(
bot,
[chatbot, system_prompt, max_length, temperature, top_p, repetition_penalty, advanced_checkbox, enable_thinking, tools, use_xml_tools, use_tools],
chatbot
)
advanced_checkbox.change(
fn=lambda x: gr.update(visible=x),
inputs=[advanced_checkbox],
outputs=[advanced_settings]
)
use_tools.change(
fn=lambda x: gr.update(visible=x),
inputs=[use_tools],
outputs=[tool_options]
)
if __name__ == "__main__":
demo.queue()
demo.launch(ssr_mode=False, mcp_server=True)