#!/bin/bash # Interactive SmolLM3 End-to-End Fine-tuning Pipeline # This script creates a complete finetuning pipeline with user configuration set -e # Exit on any error # Colors for output RED='\033[0;31m' GREEN='\033[0;32m' YELLOW='\033[1;33m' BLUE='\033[0;34m' PURPLE='\033[0;35m' CYAN='\033[0;36m' NC='\033[0m' # No Color # Function to print colored output print_status() { echo -e "${GREEN}✅ $1${NC}" } print_warning() { echo -e "${YELLOW}⚠️ $1${NC}" } print_error() { echo -e "${RED}❌ $1${NC}" } print_info() { echo -e "${BLUE}ℹ️ $1${NC}" } print_header() { echo -e "${PURPLE}🚀 $1${NC}" } print_step() { echo -e "${CYAN}📋 $1${NC}" } # Function to get user input with default value get_input() { local prompt="$1" local default="$2" local var_name="$3" if [ -n "$default" ]; then read -p "$prompt [$default]: " input if [ -z "$input" ]; then input="$default" fi else read -p "$prompt: " input while [ -z "$input" ]; do print_error "This field is required!" read -p "$prompt: " input done fi eval "$var_name=\"$input\"" } # Function to get secure token input (hidden with stars) get_secure_token_input() { local prompt="$1" local var_name="$2" local token_type="$3" echo -n "$prompt: " # Use -s flag to hide input, -r to not interpret backslashes read -s -r input echo # Add newline after hidden input # Validate that input is not empty while [ -z "$input" ]; do print_error "Token is required!" echo -n "$prompt: " read -s -r input echo done # Store the token eval "$var_name=\"$input\"" # Show confirmation with stars local masked_token="${input:0:4}****${input: -4}" print_status "$token_type token added: $masked_token" } # Function to select from options select_option() { local prompt="$1" local options=("${@:2}") local var_name="${!#}" echo "$prompt" for i in "${!options[@]}"; do echo " $((i+1)). ${options[$i]}" done while true; do read -p "Enter your choice (1-${#options[@]}): " choice if [[ "$choice" =~ ^[0-9]+$ ]] && [ "$choice" -ge 1 ] && [ "$choice" -le "${#options[@]}" ]; then eval "$var_name=\"${options[$((choice-1))]}\"" break else print_error "Invalid choice. Please enter a number between 1 and ${#options[@]}" fi done } # Function to validate HF token and get username validate_hf_token_and_get_username() { local token="$1" if [ -z "$token" ]; then return 1 fi # Use Python script for validation local result if result=$(python3 scripts/validate_hf_token.py "$token" 2>/dev/null); then # Parse JSON result using a more robust approach local success=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('success', False)) except: print('False') ") local username=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('username', '')) except: print('') ") local error=$(echo "$result" | python3 -c " import sys, json try: data = json.load(sys.stdin) print(data.get('error', 'Unknown error')) except: print('Failed to parse response') ") if [ "$success" = "True" ] && [ -n "$username" ]; then HF_USERNAME="$username" return 0 else print_error "Token validation failed: $error" return 1 fi else print_error "Failed to run token validation script. Make sure huggingface_hub is installed." return 1 fi } # Function to show training configurations (optionally filtered by family) show_training_configs() { local family="$1" # Optional: "SmolLM3" or "GPT-OSS" echo "" print_header "Available Training Configurations" echo "======================================" echo "" if [ -z "$family" ] || [ "$family" = "SmolLM3" ]; then echo "=== SmolLM3 Configurations ===" echo "1. Basic Training (Default)" echo " - Model: SmolLM3-3B" echo " - Dataset: SmolTalk" echo " - Epochs: 3" echo " - Batch Size: 2" echo " - Learning Rate: 5e-6" echo "" echo "2. H100 Lightweight (Rapid)" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR (80K samples)" echo " - Epochs: 1" echo " - Batch Size: 16" echo " - Learning Rate: 8e-6" echo " - Sequence Length: 8192" echo " - Optimized for H100 rapid training" echo "" echo "3. A100 Large Scale" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 1.3 passes" echo " - Batch Size: 8" echo " - Learning Rate: 5e-6" echo " - Sequence Length: 8192" echo "" echo "4. Multiple Passes" echo " - Model: SmolLM3-3B" echo " - Dataset: OpenHermes-FR" echo " - Epochs: 4 passes" echo " - Batch Size: 6" echo " - Learning Rate: 3e-6" echo " - Sequence Length: 8192" echo "" fi if [ -z "$family" ] || [ "$family" = "GPT-OSS" ]; then echo "=== GPT-OSS Configurations ===" echo "1. GPT-OSS Basic Training" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: Multilingual-Thinking" echo " - Epochs: 1" echo " - Batch Size: 4" echo " - Learning Rate: 2e-4" echo " - LoRA + MXFP4 Quantization" echo " - Optimized for multilingual reasoning" echo "" echo "2. GPT-OSS H100 Optimized" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: Multilingual-Thinking" echo " - Epochs: 2" echo " - Batch Size: 8" echo " - Learning Rate: 3e-4" echo " - Enhanced LoRA (rank 16)" echo " - Optimized for H100 performance" echo "" echo "3. GPT-OSS Multilingual Reasoning" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: Multilingual-Thinking" echo " - Epochs: 1" echo " - Batch Size: 4" echo " - Learning Rate: 2e-4" echo " - Specialized for reasoning tasks" echo " - Supports 10+ languages" echo "" echo "4. GPT-OSS Memory Optimized" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: Multilingual-Thinking" echo " - Epochs: 1" echo " - Batch Size: 1 (effective 16 with accumulation)" echo " - Learning Rate: 2e-4" echo " - 4-bit quantization + reduced LoRA" echo " - Optimized for limited GPU memory" echo "" echo "5. GPT-OSS OpenHermes-FR (Recommended)" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: legmlai/openhermes-fr (800K French examples)" echo " - Epochs: 1.5" echo " - Batch Size: 6 (effective 36 with accumulation)" echo " - Learning Rate: 2.5e-4" echo " - Optimized for French language training" echo " - Quality filtering enabled" echo "" echo "6. GPT-OSS OpenHermes-FR Memory Optimized" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: legmlai/openhermes-fr (200K samples)" echo " - Epochs: 1" echo " - Batch Size: 2 (effective 32 with accumulation)" echo " - Learning Rate: 2e-4" echo " - Native MXFP4 quantization" echo " - Memory optimized for 40-80GB GPUs" echo " - Harmony format compatible" echo "" echo "7. GPT-OSS Custom Dataset" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: User-defined (fully customizable)" echo " - Epochs: Configurable" echo " - Batch Size: Configurable" echo " - Learning Rate: Configurable" echo " - Maximum flexibility with all parameters" echo "" echo "8. GPT-OSS Medical o1 SFT (Reasoning)" echo " - Model: openai/gpt-oss-20b" echo " - Dataset: FreedomIntelligence/medical-o1-reasoning-SFT" echo " - Format: Question | Complex_CoT | Response" echo " - Harmony formatting with optional system/developer messages" echo "" fi } # Function to get training configuration get_training_config() { local config_type="$1" case "$config_type" in "Basic Training") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=3 BATCH_SIZE=2 GRADIENT_ACCUMULATION_STEPS=8 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=4096 CONFIG_FILE="config/train_smollm3.py" ;; "H100 Lightweight (Rapid)") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=16 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=8e-6 MAX_SEQ_LENGTH=8192 DATASET_SAMPLE_SIZE=80000 CONFIG_FILE="config/train_smollm3_h100_lightweight.py" ;; "A100 Large Scale") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=8 GRADIENT_ACCUMULATION_STEPS=16 LEARNING_RATE=5e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_large.py" ;; "Multiple Passes") MODEL_NAME="HuggingFaceTB/SmolLM3-3B" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=4 BATCH_SIZE=6 GRADIENT_ACCUMULATION_STEPS=20 LEARNING_RATE=3e-6 MAX_SEQ_LENGTH=8192 CONFIG_FILE="config/train_smollm3_openhermes_fr_a100_multiple_passes.py" ;; "GPT-OSS Basic Training") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" MAX_EPOCHS=1 BATCH_SIZE=4 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=2048 CONFIG_FILE="config/train_gpt_oss_basic.py" ;; "GPT-OSS H100 Optimized") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" MAX_EPOCHS=2 BATCH_SIZE=8 GRADIENT_ACCUMULATION_STEPS=2 LEARNING_RATE=3e-4 MAX_SEQ_LENGTH=4096 CONFIG_FILE="config/train_gpt_oss_h100_optimized.py" ;; "GPT-OSS Multilingual Reasoning") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" MAX_EPOCHS=1 BATCH_SIZE=4 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=2048 CONFIG_FILE="config/train_gpt_oss_multilingual_reasoning.py" ;; "GPT-OSS Memory Optimized") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="HuggingFaceH4/Multilingual-Thinking" MAX_EPOCHS=1 BATCH_SIZE=1 GRADIENT_ACCUMULATION_STEPS=16 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=1024 CONFIG_FILE="config/train_gpt_oss_memory_optimized.py" ;; "GPT-OSS OpenHermes-FR (Recommended)") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1.5 BATCH_SIZE=6 GRADIENT_ACCUMULATION_STEPS=6 LEARNING_RATE=2.5e-4 MAX_SEQ_LENGTH=3072 CONFIG_FILE="config/train_gpt_oss_openhermes_fr.py" ;; "GPT-OSS OpenHermes-FR Memory Optimized") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="legmlai/openhermes-fr" MAX_EPOCHS=1 BATCH_SIZE=2 GRADIENT_ACCUMULATION_STEPS=16 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=1024 CONFIG_FILE="config/train_gpt_oss_openhermes_fr_memory_optimized.py" ;; "GPT-OSS Medical o1 SFT (Reasoning)") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="FreedomIntelligence/medical-o1-reasoning-SFT" MAX_EPOCHS=1 BATCH_SIZE=2 GRADIENT_ACCUMULATION_STEPS=8 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=2048 CONFIG_FILE="config/train_gpt_oss_medical_o1_sft.py" generate_medical_o1_sft_config ;; "GPT-OSS Custom Dataset") MODEL_NAME="openai/gpt-oss-20b" DATASET_NAME="legmlai/openhermes-fr" # Will be customizable MAX_EPOCHS=1 BATCH_SIZE=4 GRADIENT_ACCUMULATION_STEPS=4 LEARNING_RATE=2e-4 MAX_SEQ_LENGTH=2048 CONFIG_FILE="config/train_gpt_oss_custom.py" get_custom_dataset_config ;; "Custom Configuration") get_custom_config ;; esac } # Function to get custom dataset configuration get_custom_dataset_config() { print_step "GPT-OSS Custom Configuration" echo "======================================" echo "Configure your GPT-OSS training:" echo "" # Dataset Configuration print_info "📊 Dataset Configuration" get_input "Dataset name (HuggingFace format: username/dataset)" "legmlai/openhermes-fr" DATASET_NAME get_input "Dataset split" "train" DATASET_SPLIT echo "" echo "Dataset format options:" echo "1. OpenHermes-FR (prompt + accepted_completion fields)" echo "2. Messages format (chat conversations)" echo "3. Text format (plain text field)" echo "4. Medical o1 SFT (Question | Complex_CoT | Response)" echo "5. Custom format (specify field names)" echo "" select_option "Select dataset format:" "OpenHermes-FR" "Messages format" "Text format" "Medical o1 SFT" "Custom format" DATASET_FORMAT case "$DATASET_FORMAT" in "OpenHermes-FR") INPUT_FIELD="prompt" TARGET_FIELD="accepted_completion" DATASET_FORMAT_CODE="openhermes_fr" FILTER_BAD_ENTRIES="true" ;; "Messages format") INPUT_FIELD="messages" TARGET_FIELD="" DATASET_FORMAT_CODE="messages" FILTER_BAD_ENTRIES="false" ;; "Text format") INPUT_FIELD="text" TARGET_FIELD="" DATASET_FORMAT_CODE="text" FILTER_BAD_ENTRIES="false" ;; "Medical o1 SFT") INPUT_FIELD="Question" TARGET_FIELD="Response" DATASET_FORMAT_CODE="medical_o1_sft" FILTER_BAD_ENTRIES="false" # Field mappings and prefixes get_input "Question field name" "Question" MED_Q_FIELD get_input "Reasoning field name" "Complex_CoT" MED_REASON_FIELD get_input "Response field name" "Response" MED_RESP_FIELD get_input "Reason prefix (before reasoning)" "Reasoning: " MED_REASON_PREFIX get_input "Answer prefix (before final answer)" "Final Answer: " MED_ANSWER_PREFIX ;; "Custom format") get_input "Input field name" "prompt" INPUT_FIELD get_input "Target field name (leave empty if not needed)" "accepted_completion" TARGET_FIELD DATASET_FORMAT_CODE="custom" get_input "Filter bad entries? (true/false)" "false" FILTER_BAD_ENTRIES ;; esac # Optional Harmony context echo "" print_info "💬 Harmony Context (optional)" get_input "System message" "You are GPT-Tonic, a large language model trained by TonicAI." SYSTEM_MESSAGE get_input "Developer message" "You are an intelligent assistant that can answer customer service queries" DEVELOPER_MESSAGE get_input "Model identity/persona (used in chat_template_kwargs.model_identity)" "You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY # Dataset Filtering Options echo "" print_info "🔍 Dataset Filtering Options" get_input "Maximum samples to use (leave empty for all)" "" MAX_SAMPLES get_input "Minimum sequence length" "10" MIN_LENGTH get_input "Maximum sequence length (leave empty for auto)" "" MAX_LENGTH # Training Hyperparameters echo "" print_info "⚙️ Training Hyperparameters" get_input "Number of epochs" "1.0" NUM_EPOCHS get_input "Batch size per device" "4" BATCH_SIZE get_input "Gradient accumulation steps" "4" GRAD_ACCUM_STEPS get_input "Learning rate" "2e-4" LEARNING_RATE get_input "Minimum learning rate" "2e-5" MIN_LR get_input "Weight decay" "0.01" WEIGHT_DECAY get_input "Warmup ratio" "0.03" WARMUP_RATIO # Sequence Length echo "" print_info "📏 Sequence Configuration" get_input "Maximum sequence length" "2048" MAX_SEQ_LENGTH # LoRA Configuration echo "" print_info "🎛️ LoRA Configuration" get_input "LoRA rank" "16" LORA_RANK get_input "LoRA alpha" "32" LORA_ALPHA get_input "LoRA dropout" "0.05" LORA_DROPOUT # Memory & Performance echo "" print_info "💾 Memory & Performance" select_option "Mixed precision:" "BF16 (recommended)" "FP16" "FP32" MIXED_PRECISION get_input "Data loading workers" "4" NUM_WORKERS select_option "Quantization:" "MXFP4 (default)" "4-bit BNB" "None" QUANTIZATION_TYPE # Advanced Options echo "" echo "Advanced options (press Enter for defaults):" get_input "Max gradient norm" "1.0" MAX_GRAD_NORM get_input "Logging steps" "10" LOGGING_STEPS get_input "Evaluation steps" "100" EVAL_STEPS get_input "Save steps" "500" SAVE_STEPS # Update the custom config file with user's choices update_enhanced_gpt_oss_config } # Function to materialize a default Medical o1 SFT config file generate_medical_o1_sft_config() { print_info "Ensuring medical o1 SFT configuration exists..." if [ -f "config/train_gpt_oss_medical_o1_sft.py" ]; then print_status "Medical o1 SFT config already present" return fi cat > config/train_gpt_oss_medical_o1_sft.py << 'EOF' """ Auto-generated placeholder. A richer version will be imported at runtime. """ from config.train_gpt_oss_medical_o1_sft import config # reuse main config EOF print_status "Medical o1 SFT config placeholder created" } # Function to get custom configuration get_custom_config() { print_step "Custom Configuration Setup" echo "=============================" get_input "Model name" "HuggingFaceTB/SmolLM3-3B" MODEL_NAME get_input "Dataset name" "HuggingFaceTB/smoltalk" DATASET_NAME get_input "Number of epochs" "3" MAX_EPOCHS get_input "Batch size" "2" BATCH_SIZE get_input "Gradient accumulation steps" "8" GRADIENT_ACCUMULATION_STEPS get_input "Learning rate" "5e-6" LEARNING_RATE get_input "Max sequence length" "4096" MAX_SEQ_LENGTH # Select config file based on dataset if [[ "$DATASET_NAME" == *"openhermes"* ]]; then CONFIG_FILE="config/train_smollm3_openhermes_fr.py" else CONFIG_FILE="config/train_smollm3.py" fi } # Function to update enhanced GPT-OSS config with user choices update_enhanced_gpt_oss_config() { print_info "Generating enhanced custom GPT-OSS configuration..." # Process mixed precision setting case "$MIXED_PRECISION" in "BF16 (recommended)") FP16="False" BF16="True" ;; "FP16") FP16="True" BF16="False" ;; "FP32") FP16="False" BF16="False" ;; esac # Process quantization setting case "$QUANTIZATION_TYPE" in "MXFP4 (default)") USE_QUANTIZATION="True" QUANTIZATION_CONFIG='{"dequantize": True, "load_in_4bit": False}' ;; "4-bit BNB") USE_QUANTIZATION="True" QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": True, "bnb_4bit_compute_dtype": "bfloat16", "bnb_4bit_use_double_quant": True, "bnb_4bit_quant_type": "nf4"}' ;; "None") USE_QUANTIZATION="False" QUANTIZATION_CONFIG='{"dequantize": False, "load_in_4bit": False}' ;; esac # Safely serialize free-text fields to valid Python literals SYSTEM_MESSAGE_LITERAL=$(SYSTEM_MESSAGE="$SYSTEM_MESSAGE" python - <<'PY' import json, os v = os.environ.get('SYSTEM_MESSAGE', '') print('None' if not v else json.dumps(v)) PY ) DEVELOPER_MESSAGE_LITERAL=$(DEVELOPER_MESSAGE="$DEVELOPER_MESSAGE" python - <<'PY' import json, os v = os.environ.get('DEVELOPER_MESSAGE', '') print('None' if not v else json.dumps(v)) PY ) MODEL_IDENTITY_DEFAULT="You are GPT-Tonic, a large language model trained by TonicAI." MODEL_IDENTITY_LITERAL=$(MODEL_IDENTITY="${MODEL_IDENTITY:-$MODEL_IDENTITY_DEFAULT}" python - <<'PY' import json, os v = os.environ.get('MODEL_IDENTITY', '') print(json.dumps(v)) PY ) # Create enhanced config file with all user choices cat > "$CONFIG_FILE" << EOF """ GPT-OSS Enhanced Custom Training Configuration - Generated by launch.sh Dataset: $DATASET_NAME ($DATASET_FORMAT) Optimized for: ${DATASET_FORMAT} format with full customization """ from config.train_gpt_oss_custom import GPTOSSEnhancedCustomConfig # Create enhanced config with all customizations config = GPTOSSEnhancedCustomConfig( # ============================================================================ # DATASET CONFIGURATION # ============================================================================ dataset_name="$DATASET_NAME", dataset_split="$DATASET_SPLIT", dataset_format="$DATASET_FORMAT_CODE", input_field="$INPUT_FIELD", target_field=$(if [ -n "$TARGET_FIELD" ]; then echo "\"$TARGET_FIELD\""; else echo "None"; fi), filter_bad_entries=$FILTER_BAD_ENTRIES, max_samples=$(if [ -n "$MAX_SAMPLES" ]; then echo "$MAX_SAMPLES"; else echo "None"; fi), min_length=$MIN_LENGTH, max_length=$(if [ -n "$MAX_LENGTH" ]; then echo "$MAX_LENGTH"; else echo "None"; fi), # ============================================================================ # HARMONY CONFIGURATION # ============================================================================ system_message=$SYSTEM_MESSAGE_LITERAL, developer_message=$DEVELOPER_MESSAGE_LITERAL, use_harmony_format=True, chat_template_kwargs={ "add_generation_prompt": True, "tokenize": False, "auto_insert_role": True, "reasoning_effort": "medium", "model_identity": $MODEL_IDENTITY_LITERAL, "builtin_tools": [], }, # Medical o1 SFT mapping (ignored unless dataset_format == 'medical_o1_sft') question_field=$(if [ -n "$MED_Q_FIELD" ]; then echo "\"$MED_Q_FIELD\""; else echo "\"Question\""; fi), reasoning_field=$(if [ -n "$MED_REASON_FIELD" ]; then echo "\"$MED_REASON_FIELD\""; else echo "\"Complex_CoT\""; fi), response_field=$(if [ -n "$MED_RESP_FIELD" ]; then echo "\"$MED_RESP_FIELD\""; else echo "\"Response\""; fi), reason_prefix=$(if [ -n "$MED_REASON_PREFIX" ]; then printf '%s' "\"$MED_REASON_PREFIX\""; else echo "\"Reasoning: \""; fi), answer_prefix=$(if [ -n "$MED_ANSWER_PREFIX" ]; then printf '%s' "\"$MED_ANSWER_PREFIX\""; else echo "\"Final Answer: \""; fi), # ============================================================================ # TRAINING HYPERPARAMETERS # ============================================================================ num_train_epochs=$NUM_EPOCHS, batch_size=$BATCH_SIZE, gradient_accumulation_steps=$GRAD_ACCUM_STEPS, learning_rate=$LEARNING_RATE, min_lr=$MIN_LR, weight_decay=$WEIGHT_DECAY, warmup_ratio=$WARMUP_RATIO, max_grad_norm=$MAX_GRAD_NORM, # ============================================================================ # MODEL CONFIGURATION # ============================================================================ max_seq_length=$MAX_SEQ_LENGTH, # ============================================================================ # MIXED PRECISION # ============================================================================ fp16=$FP16, bf16=$BF16, # ============================================================================ # LORA CONFIGURATION # ============================================================================ lora_config={ "r": $LORA_RANK, "lora_alpha": $LORA_ALPHA, "lora_dropout": $LORA_DROPOUT, "target_modules": "all-linear", "bias": "none", "task_type": "CAUSAL_LM", }, # ============================================================================ # QUANTIZATION CONFIGURATION # ============================================================================ use_quantization=$USE_QUANTIZATION, quantization_config=$QUANTIZATION_CONFIG, # ============================================================================ # PERFORMANCE CONFIGURATION # ============================================================================ dataloader_num_workers=$NUM_WORKERS, dataloader_pin_memory=True, group_by_length=True, # ============================================================================ # LOGGING & EVALUATION # ============================================================================ logging_steps=$LOGGING_STEPS, eval_steps=$EVAL_STEPS, save_steps=$SAVE_STEPS, # ============================================================================ # RUNTIME CONFIGURATION # ============================================================================ experiment_name="$EXPERIMENT_NAME", trackio_url="$TRACKIO_URL", dataset_repo="$TRACKIO_DATASET_REPO", enable_tracking=True, ) EOF print_status "Enhanced GPT-OSS configuration generated successfully!" print_info "Configuration saved to: $CONFIG_FILE" } # Function to create training configuration file create_training_config() { local config_file="$1" cat > "$config_file" << EOF """ SmolLM3 Training Configuration - Generated by launch.sh Optimized for: $TRAINING_CONFIG_TYPE """ from config.train_smollm3 import SmolLM3Config config = SmolLM3Config( # Trainer type selection trainer_type="$TRAINER_TYPE", # Model configuration model_name="$MODEL_NAME", max_seq_length=$MAX_SEQ_LENGTH, use_flash_attention=True, use_gradient_checkpointing=True, # Training configuration batch_size=$BATCH_SIZE, gradient_accumulation_steps=$GRADIENT_ACCUMULATION_STEPS, learning_rate=$LEARNING_RATE, weight_decay=0.01, warmup_steps=100, max_iters=None, # Will be calculated based on epochs eval_interval=100, log_interval=10, save_interval=500, # Optimizer configuration optimizer="adamw", beta1=0.9, beta2=0.95, eps=1e-8, # Scheduler configuration scheduler="cosine", min_lr=1e-6, # Mixed precision fp16=True, bf16=False, # Logging and saving save_steps=$SAVE_STEPS, eval_steps=$EVAL_STEPS, logging_steps=$LOGGING_STEPS, save_total_limit=3, # Evaluation eval_strategy="steps", metric_for_best_model="eval_loss", greater_is_better=False, load_best_model_at_end=True, # Data configuration dataset_name="$DATASET_NAME", dataset_split="train", input_field="prompt", target_field="completion", filter_bad_entries=False, bad_entry_field="bad_entry", # Chat template configuration use_chat_template=True, chat_template_kwargs={ "enable_thinking": False, "add_generation_prompt": True, "no_think_system_message": True }, # Trackio monitoring configuration enable_tracking=True, trackio_url="$TRACKIO_URL", trackio_token=None, log_artifacts=True, log_metrics=True, log_config=True, experiment_name="$EXPERIMENT_NAME", # HF Datasets configuration dataset_repo="$TRACKIO_DATASET_REPO", monitoring_mode="$MONITORING_MODE", ) EOF } # Main script starts here print_header "SmolLM3 End-to-End Fine-tuning Pipeline" echo "==============================================" echo "" # Step 1: Get user credentials (write and read tokens) print_step "Step 1: User Authentication" echo "================================" print_info "You'll need two Hugging Face tokens:" echo "1. Write Token - Used initially for training and creating repositories" echo "2. Read Token - Will replace the write token in Trackio Space after training for security" echo "" print_info "The pipeline will start with the write token in HF_TOKEN, then switch to read token automatically." echo "" print_info "Getting Write Token (for training operations)..." get_secure_token_input "Enter your Hugging Face WRITE token (get from https://huggingface.co/settings/tokens)" HF_WRITE_TOKEN "Write" print_info "Getting Read Token (for Trackio Space security)..." get_secure_token_input "Enter your Hugging Face READ token (get from https://huggingface.co/settings/tokens)" HF_READ_TOKEN "Read" # Validate write token and get username automatically print_info "Validating write token and getting username..." if validate_hf_token_and_get_username "$HF_WRITE_TOKEN"; then print_status "Write token validated successfully" print_info "Username: $HF_USERNAME" else print_error "Invalid write token. Please check your token and try again." exit 1 fi # Validate read token belongs to same user print_info "Validating read token..." if validate_hf_token_and_get_username "$HF_READ_TOKEN"; then READ_USERNAME="$HF_USERNAME" if [ "$READ_USERNAME" = "$HF_USERNAME" ]; then print_status "Read token validated successfully" print_info "Both tokens belong to user: $HF_USERNAME" else print_error "Token mismatch: write token user ($HF_USERNAME) != read token user ($READ_USERNAME)" print_error "Both tokens must belong to the same user" exit 1 fi else print_error "Invalid read token. Please check your token and try again." exit 1 fi # Set the main HF_TOKEN to write token for training operations (will be switched later) HF_TOKEN="$HF_WRITE_TOKEN" # Step 2: Select training configuration print_step "Step 2: Training Configuration" echo "==================================" # 2.1 Select model family first select_option "Select model family:" "SmolLM3" "GPT-OSS" MODEL_FAMILY # 2.2 Show only the configurations for the selected family and prompt selection show_training_configs "$MODEL_FAMILY" if [ "$MODEL_FAMILY" = "SmolLM3" ]; then select_option "Select training configuration:" \ "Basic Training" \ "H100 Lightweight (Rapid)" \ "A100 Large Scale" \ "Multiple Passes" \ "Custom Configuration" \ TRAINING_CONFIG_TYPE else select_option "Select training configuration:" \ "GPT-OSS Basic Training" \ "GPT-OSS H100 Optimized" \ "GPT-OSS Multilingual Reasoning" \ "GPT-OSS Memory Optimized" \ "GPT-OSS OpenHermes-FR (Recommended)" \ "GPT-OSS OpenHermes-FR Memory Optimized" \ "GPT-OSS Custom Dataset" \ "GPT-OSS Medical o1 SFT (Reasoning)" \ TRAINING_CONFIG_TYPE fi get_training_config "$TRAINING_CONFIG_TYPE" # Step 2.4: Monitoring mode selection print_step "Step 2.4: Monitoring Mode" echo "==============================" echo "Choose how to log your experiment:" select_option "Select monitoring mode:" \ "Both (Trackio + Dataset)" \ "Trackio only" \ "Dataset only" \ "None (local only)" \ MONITORING_MODE_OPTION case "$MONITORING_MODE_OPTION" in "Both (Trackio + Dataset)") MONITORING_MODE="both" ;; "Trackio only") MONITORING_MODE="trackio" ;; "Dataset only") MONITORING_MODE="dataset" ;; "None (local only)") MONITORING_MODE="none" ;; *) MONITORING_MODE="both" ;; esac # Decide which token to use for the Trackio Space secret # - dataset: read-only token (Space only needs to read datasets) # - trackio/both: write token until end of training (Space writes to datasets) # - none: Space is skipped if [ "$MONITORING_MODE" = "dataset" ]; then SPACE_DEPLOY_TOKEN="$HF_READ_TOKEN" else SPACE_DEPLOY_TOKEN="$HF_WRITE_TOKEN" fi # 2.3 Set a family-specific default model description for the model card if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then DEFAULT_MODEL_DESCRIPTION="A fine-tuned GPT-OSS-20B model optimized for multilingual reasoning and instruction following." else DEFAULT_MODEL_DESCRIPTION="A fine-tuned SmolLM3-3B model optimized for instruction following and French language tasks." fi # Step 3: Get experiment details print_step "Step 3: Experiment Details" echo "==============================" # Derive default experiment name from smolfactory + chosen model family if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then FAMILY_SLUG="gpt-oss" else FAMILY_SLUG="smollm3" fi DEFAULT_EXPERIMENT_NAME="smolfactory-${FAMILY_SLUG}_$(date +%Y%m%d_%H%M%S)" get_input "Experiment name" "$DEFAULT_EXPERIMENT_NAME" EXPERIMENT_NAME # Configure model repository name (customizable) print_info "Setting up model repository name..." # Ask only for short repo name; we'll prefix with username automatically DEFAULT_SHORT_REPO="smolfactory-$(date +%Y%m%d)" get_input "Model repository name (repo only, no username/)" "$DEFAULT_SHORT_REPO" REPO_SHORT # Build full repo id using detected username REPO_NAME="$HF_USERNAME/$REPO_SHORT" print_status "Model repository: $REPO_NAME" # Automatically create dataset repository print_info "Setting up Trackio dataset repository automatically..." # Set default dataset repository TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" # Ask if user wants to customize dataset name echo "" echo "Dataset repository options:" echo "1. Use default name (trackio-experiments)" echo "2. Customize dataset name" echo "" read -p "Choose option (1/2): " dataset_option if [ "$dataset_option" = "2" ]; then get_input "Custom dataset name (without username)" "trackio-experiments" CUSTOM_DATASET_NAME if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" "$CUSTOM_DATASET_NAME" 2>/dev/null; then # Update with the actual repository name from the script TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Custom dataset repository created successfully" else print_warning "Custom dataset creation failed, using default" if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Default dataset repository created successfully" else print_warning "Automatic dataset creation failed, using default" TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" fi fi else if python3 scripts/dataset_tonic/setup_hf_dataset.py "$HF_TOKEN" 2>/dev/null; then TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" print_status "Dataset repository created successfully" else print_warning "Automatic dataset creation failed, using default" TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" fi fi # Ensure TRACKIO_DATASET_REPO is always set if [ -z "$TRACKIO_DATASET_REPO" ]; then TRACKIO_DATASET_REPO="$HF_USERNAME/trackio-experiments" print_warning "Dataset repository not set, using default: $TRACKIO_DATASET_REPO" fi # Step 3.5: Select trainer type print_step "Step 3.5: Trainer Type Selection" echo "====================================" echo "Select the type of training to perform:" echo "1. SFT (Supervised Fine-tuning) - Standard instruction tuning" echo " - Uses SFTTrainer for instruction following" echo " - Suitable for most fine-tuning tasks" echo " - Optimized for instruction datasets" echo "" echo "2. DPO (Direct Preference Optimization) - Preference-based training" echo " - Uses DPOTrainer for preference learning" echo " - Requires preference datasets (chosen/rejected pairs)" echo " - Optimizes for human preferences" echo "" select_option "Select trainer type:" "SFT" "DPO" TRAINER_TYPE # Convert trainer type to lowercase for the training script TRAINER_TYPE_LOWER=$(echo "$TRAINER_TYPE" | tr '[:upper:]' '[:lower:]') # Step 4: Training parameters print_step "Step 4: Training Parameters" echo "===============================" echo "Current configuration:" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" echo " Trainer Type: $TRAINER_TYPE" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Gradient Accumulation: $GRADIENT_ACCUMULATION_STEPS" echo " Learning Rate: $LEARNING_RATE" echo " Sequence Length: $MAX_SEQ_LENGTH" get_input "Save steps" "500" SAVE_STEPS get_input "Evaluation steps" "100" EVAL_STEPS get_input "Logging steps" "10" LOGGING_STEPS # Step 5: Trackio Space configuration (skip when local-only) if [ "$MONITORING_MODE" != "none" ]; then print_step "Step 5: Trackio Space Configuration" echo "======================================" get_input "Trackio Space name" "trackio-monitoring-$(date +%Y%m%d)" TRACKIO_SPACE_NAME TRACKIO_URL="https://huggingface.co/spaces/$HF_USERNAME/$TRACKIO_SPACE_NAME" else TRACKIO_SPACE_NAME="" TRACKIO_URL="" fi # Step 6: Confirm configuration print_step "Step 6: Configuration Summary" echo "=================================" echo "" echo "📋 Configuration Summary:" echo "========================" echo " User: $HF_USERNAME (auto-detected from token)" echo " Experiment: $EXPERIMENT_NAME" echo " Model: $MODEL_NAME" echo " Dataset: $DATASET_NAME" echo " Training Config: $TRAINING_CONFIG_TYPE" echo " Trainer Type: $TRAINER_TYPE" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo " Dataset Sample Size: ${DATASET_SAMPLE_SIZE:-80000}" fi echo " Epochs: $MAX_EPOCHS" echo " Batch Size: $BATCH_SIZE" echo " Learning Rate: $LEARNING_RATE" echo " Model Repo: $REPO_NAME (auto-generated)" echo " Author: $AUTHOR_NAME" echo " Trackio Space: $TRACKIO_URL" echo " HF Dataset: $TRACKIO_DATASET_REPO" echo " Monitoring Mode: $MONITORING_MODE" echo "" read -p "Proceed with this configuration? (y/N): " confirm if [[ ! "$confirm" =~ ^[Yy]$ ]]; then print_info "Configuration cancelled. Exiting." exit 0 fi # Step 7: Environment setup print_step "Step 7: Environment Setup" echo "============================" print_info "Installing system dependencies..." # Check if we're already root or if sudo is available if [ "$EUID" -eq 0 ]; then # Already root, no need for sudo print_info "Running as root, skipping sudo..." apt-get update apt-get install -y git curl wget unzip python3-pip python3-venv elif command -v sudo >/dev/null 2>&1; then # sudo is available, use it print_info "Using sudo for system dependencies..." sudo apt-get update sudo apt-get install -y git curl wget unzip python3-pip python3-venv else # No sudo available, try without it print_warning "sudo not available, attempting to install without sudo..." if command -v apt-get >/dev/null 2>&1; then apt-get update apt-get install -y git curl wget unzip python3-pip python3-venv else print_warning "apt-get not available, skipping system dependencies..." print_info "Please ensure git, curl, wget, unzip, python3-pip, and python3-venv are installed" fi fi # Set environment variables before creating virtual environment print_info "Setting up environment variables..." export HF_TOKEN="$HF_TOKEN" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" export HF_USERNAME="$HF_USERNAME" print_info "Creating Python virtual environment..." python3 -m venv smollm3_env source smollm3_env/bin/activate # Re-export environment variables in the virtual environment print_info "Configuring environment variables in virtual environment..." export HF_TOKEN="$HF_TOKEN" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" export HF_USERNAME="$HF_USERNAME" print_info "Installing PyTorch with CUDA support..." pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 print_info "Installing project dependencies..." pip install -r requirements/requirements_core.txt print_info "Installing additional dependencies..." pip install trl>=0.7.0 pip install peft>=0.4.0 pip install accelerate>=0.20.0 pip install huggingface-hub>=0.16.0 pip install datasets>=2.14.0 pip install requests>=2.31.0 # Step 8: Authentication setup print_step "Step 8: Authentication Setup" echo "================================" print_info "Setting up Hugging Face token for Python API..." print_status "HF token configured for Python API usage" print_info "Username: $HF_USERNAME (auto-detected from token)" # Verify token is available in the virtual environment print_info "Verifying token availability in virtual environment..." if [ -n "$HF_TOKEN" ] && [ -n "$HUGGING_FACE_HUB_TOKEN" ]; then print_status "✅ Token properly configured in virtual environment" print_info " HF_TOKEN: ${HF_TOKEN:0:10}...${HF_TOKEN: -4} (currently using WRITE token)" print_info " HUGGING_FACE_HUB_TOKEN: ${HUGGING_FACE_HUB_TOKEN:0:10}...${HUGGING_FACE_HUB_TOKEN: -4}" print_info " Will be switched to READ token after training for security" else print_error "❌ Token not properly configured in virtual environment" print_error "Please check your token and try again" exit 1 fi # Configure git for HF operations print_step "Step 8.1: Git Configuration" echo "================================" print_info "Configuring git for Hugging Face operations..." # Get user's email for git configuration get_input "Enter the email you used to register your account at huggingface for git configuration" "" GIT_EMAIL # Configure git locally (not globally) for this project git config user.email "$GIT_EMAIL" git config user.name "$HF_USERNAME" # Verify git configuration print_info "Verifying git configuration..." if git config user.email && git config user.name; then print_status "Git configured successfully" print_info " Email: $(git config user.email)" print_info " Name: $(git config user.name)" else print_error "Failed to configure git" exit 1 fi # Step 8.2: Author Information for Model Card print_step "Step 8.2: Author Information" echo "=================================" print_info "This information will be used in the model card and citation." get_input "Author name for model card" "$HF_USERNAME" AUTHOR_NAME print_info "Model description will be used in the model card and repository." get_input "Model description" "$DEFAULT_MODEL_DESCRIPTION" MODEL_DESCRIPTION # Step 9: Deploy Trackio Space (automated, skipped for local-only) if [ "$MONITORING_MODE" != "none" ]; then print_step "Step 9: Deploying Trackio Space" echo "===================================" cd scripts/trackio_tonic print_info "Deploying Trackio Space ..." print_info "Space name: $TRACKIO_SPACE_NAME" print_info "Username will be auto-detected from token" if [ "$MONITORING_MODE" = "dataset" ]; then print_info "Deploying with READ token (Space will NOT write to datasets)" else print_info "Deploying with WRITE token (Space will write to datasets during training)" fi # Ensure environment variables are available for the script export HF_TOKEN="$SPACE_DEPLOY_TOKEN" export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN" export HF_USERNAME="$HF_USERNAME" # Run deployment script with automated features (pass deploy token) python deploy_trackio_space.py "$TRACKIO_SPACE_NAME" "$SPACE_DEPLOY_TOKEN" "$GIT_EMAIL" "$HF_USERNAME" "$TRACKIO_DATASET_REPO" print_status "Trackio Space deployed: $TRACKIO_URL" else print_info "Skipping Trackio Space deployment (monitoring_mode=$MONITORING_MODE)" fi if [ "$MONITORING_MODE" != "none" ]; then # Step 10: Setup HF Dataset (automated) — required unless local-only print_step "Step 10: Setting up HF Dataset" echo "==================================" cd ../dataset_tonic print_info "Setting up HF Dataset with automated features..." print_info "Username will be auto-detected from token" print_info "Dataset repository: $TRACKIO_DATASET_REPO" # Ensure environment variables are available for the script export HF_TOKEN="$HF_WRITE_TOKEN" export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" export HF_USERNAME="$HF_USERNAME" python setup_hf_dataset.py "$HF_TOKEN" else print_info "Skipping HF Dataset setup (monitoring_mode=$MONITORING_MODE)" fi # Step 11: Configure Trackio (automated) — skipped for local-only if [ "$MONITORING_MODE" != "none" ]; then print_step "Step 11: Configuring Trackio" echo "=================================" cd ../trackio_tonic print_info "Configuring Trackio ..." print_info "Username will be auto-detected from token" # Ensure environment variables are available for the script export HF_TOKEN="$SPACE_DEPLOY_TOKEN" export HUGGING_FACE_HUB_TOKEN="$SPACE_DEPLOY_TOKEN" export HF_USERNAME="$HF_USERNAME" python configure_trackio.py else print_info "Skipping Trackio configuration (monitoring_mode=$MONITORING_MODE)" fi # Step 12: Training Configuration print_step "Step 12: Training Configuration" echo "===================================" cd ../.. print_info "Using existing configuration file: $CONFIG_FILE" # Step 13: Dataset Configuration print_step "Step 13: Dataset Configuration" echo "==================================" print_info "Dataset will be loaded directly by src/data.py during training" print_info "Dataset: $DATASET_NAME" if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then print_info "Sample size: ${DATASET_SAMPLE_SIZE:-80000} (will be handled by data.py)" fi # Step 14: Training Parameters print_step "Step 14: Training Parameters" echo "================================" print_info "Training parameters will be loaded from configuration file" print_info "Model: $MODEL_NAME" print_info "Dataset: $DATASET_NAME" print_info "Batch size: $BATCH_SIZE" print_info "Learning rate: $LEARNING_RATE" # Step 14.5: Define Output Directory print_step "Step 14.5: Output Directory Configuration" echo "=============================================" # Define the output directory for training results OUTPUT_DIR="./outputs/${EXPERIMENT_NAME}_$(date +%Y%m%d_%H%M%S)" print_info "Training output directory: $OUTPUT_DIR" # Create output directory mkdir -p "$OUTPUT_DIR" print_status "Output directory created: $OUTPUT_DIR" # Step 15: Start training print_step "Step 15: Starting Training" echo "==============================" print_info "Starting training with configuration: $CONFIG_FILE" print_info "Experiment: $EXPERIMENT_NAME" print_info "Output: $OUTPUT_DIR" print_info "Trackio: $TRACKIO_URL" # Ensure environment variables are available for training export HF_WRITE_TOKEN="$HF_WRITE_TOKEN" export HF_READ_TOKEN="$HF_READ_TOKEN" export HF_TOKEN="$HF_WRITE_TOKEN" export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" export HF_USERNAME="$HF_USERNAME" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" export OUTPUT_DIR="$OUTPUT_DIR" export MONITORING_MODE="$MONITORING_MODE" # Run the appropriate training script based on model type if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then print_info "Using GPT-OSS specialized training script..." python scripts/training/train_gpt_oss.py \ --config "$CONFIG_FILE" \ --experiment-name "$EXPERIMENT_NAME" \ --output-dir "$OUTPUT_DIR" \ --trackio-url "$TRACKIO_URL" \ --trainer-type "$TRAINER_TYPE_LOWER" else print_info "Using standard SmolLM3 training script..." python scripts/training/train.py \ --config "$CONFIG_FILE" \ --experiment-name "$EXPERIMENT_NAME" \ --output-dir "$OUTPUT_DIR" \ --trackio-url "$TRACKIO_URL" \ --trainer-type "$TRAINER_TYPE_LOWER" fi # Step 16: Push model to Hugging Face Hub print_step "Step 16: Pushing Model to HF Hub" echo "=====================================" print_info "Pushing model to: $REPO_NAME" print_info "Checkpoint: $OUTPUT_DIR" # Ensure environment variables are available for model push export HF_WRITE_TOKEN="$HF_WRITE_TOKEN" export HF_READ_TOKEN="$HF_READ_TOKEN" export HF_TOKEN="$HF_TOKEN" export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" export HF_USERNAME="$HF_USERNAME" export TRACKIO_DATASET_REPO="$TRACKIO_DATASET_REPO" export OUTPUT_DIR="$OUTPUT_DIR" # Run the appropriate push script based on model type if [[ "$MODEL_NAME" == *"gpt-oss"* ]]; then print_info "Using GPT-OSS specialized push script..." python scripts/model_tonic/push_gpt_oss_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "$EXPERIMENT_NAME" \ --dataset-repo "$TRACKIO_DATASET_REPO" \ --author-name "$AUTHOR_NAME" \ --model-description "$MODEL_DESCRIPTION" \ --training-config-type "$TRAINING_CONFIG_TYPE" \ --model-name "$MODEL_NAME" \ --dataset-name "$DATASET_NAME" \ --batch-size "$BATCH_SIZE" \ --learning-rate "$LEARNING_RATE" \ --max-epochs "$MAX_EPOCHS" \ --max-seq-length "$MAX_SEQ_LENGTH" \ --trainer-type "$TRAINER_TYPE" else print_info "Using standard SmolLM3 push script..." python scripts/model_tonic/push_to_huggingface.py "$OUTPUT_DIR" "$REPO_NAME" \ --token "$HF_TOKEN" \ --trackio-url "$TRACKIO_URL" \ --experiment-name "$EXPERIMENT_NAME" \ --dataset-repo "$TRACKIO_DATASET_REPO" \ --author-name "$AUTHOR_NAME" \ --model-description "$MODEL_DESCRIPTION" \ --training-config-type "$TRAINING_CONFIG_TYPE" \ --model-name "$MODEL_NAME" \ --dataset-name "$DATASET_NAME" \ --batch-size "$BATCH_SIZE" \ --learning-rate "$LEARNING_RATE" \ --max-epochs "$MAX_EPOCHS" \ --max-seq-length "$MAX_SEQ_LENGTH" \ --trainer-type "$TRAINER_TYPE" fi # Step 16.5: Switch Trackio Space to Read Token (Security) — only for trackio/both if [ "$MONITORING_MODE" = "trackio" ] || [ "$MONITORING_MODE" = "both" ]; then print_step "Step 16.5: Switching to Read Token for Security" echo "====================================================" print_info "Switching Trackio Space HF_TOKEN from write token to read token for security..." print_info "This ensures the space can only read datasets, not write to repositories" # Ensure environment variables are available for token switch export HF_TOKEN="$HF_WRITE_TOKEN" # Use write token to update space export HUGGING_FACE_HUB_TOKEN="$HF_WRITE_TOKEN" export HF_USERNAME="$HF_USERNAME" # Switch HF_TOKEN in Trackio Space from write to read token cd scripts/trackio_tonic python switch_to_read_token.py "$HF_USERNAME/$TRACKIO_SPACE_NAME" "$HF_READ_TOKEN" "$HF_WRITE_TOKEN" if [ $? -eq 0 ]; then print_status "✅ Successfully switched Trackio Space HF_TOKEN to read token" print_info "🔒 Space now uses read-only permissions for security" else print_warning "⚠️ Failed to switch to read token, but continuing with pipeline" print_info "You can manually switch the token in your Space settings later" fi cd ../.. else print_info "Skipping token switch (monitoring_mode=$MONITORING_MODE)" fi # Step 17: Deploy Demo Space print_step "Step 17: Deploying Demo Space" echo "==================================" # Ask user if they want to deploy a demo space get_input "Do you want to deploy a demo space to test your model? (y/n)" "y" "DEPLOY_DEMO" if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then print_info "Deploying demo space for model testing..." # Use main model for demo (no quantization) DEMO_MODEL_ID="$REPO_NAME" DEMO_SUBFOLDER="" # Ensure environment variables are available for demo deployment export HF_TOKEN="$HF_TOKEN" export HUGGING_FACE_HUB_TOKEN="$HF_TOKEN" export HF_USERNAME="$HF_USERNAME" print_info "Deploying demo space for model: $DEMO_MODEL_ID" print_info "Using subfolder: $DEMO_SUBFOLDER" # Additional demo parameters DEMO_EXTRA_ARGS="" if [ "$MODEL_FAMILY" = "GPT-OSS" ]; then # Prebuilt medical example for GPT-OSS demo DEMO_EXTRA_ARGS="--examples-type medical" fi python scripts/deploy_demo_space.py \ --hf-token "$HF_WRITE_TOKEN" \ --space-secret-token "$HF_READ_TOKEN" \ --hf-username "$HF_USERNAME" \ --model-id "$DEMO_MODEL_ID" \ --subfolder "$DEMO_SUBFOLDER" \ --space-name "${REPO_SHORT}-demo" \ --config-file "$CONFIG_FILE" \ $DEMO_EXTRA_ARGS if [ $? -eq 0 ]; then DEMO_SPACE_URL="https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo" print_status "✅ Demo space deployed successfully: $DEMO_SPACE_URL" else print_warning "⚠️ Demo space deployment failed, but continuing with pipeline" fi else print_info "Skipping demo space deployment" fi # Step 18: Create summary report print_step "Step 18: Creating Summary Report" echo "====================================" cat > training_summary.md << EOF # SmolLM3 Fine-tuning Summary ## Configuration - **Model**: $MODEL_NAME - **Dataset**: $DATASET_NAME - **Experiment**: $EXPERIMENT_NAME - **Repository**: $REPO_NAME - **Trackio Space**: $TRACKIO_URL - **HF Dataset**: $TRACKIO_DATASET_REPO - **Training Config**: $TRAINING_CONFIG_TYPE - **Trainer Type**: $TRAINER_TYPE - **Security**: Single HF_TOKEN switched from write to read token $(if [ "$TRAINING_CONFIG_TYPE" = "H100 Lightweight (Rapid)" ]; then echo "- **Dataset Sample Size**: ${DATASET_SAMPLE_SIZE:-80000}" fi) ## Training Parameters - **Batch Size**: $BATCH_SIZE - **Gradient Accumulation**: $GRADIENT_ACCUMULATION_STEPS - **Learning Rate**: $LEARNING_RATE - **Max Epochs**: $MAX_EPOCHS - **Sequence Length**: $MAX_SEQ_LENGTH ## Results - **Model Repository**: https://huggingface.co/$REPO_NAME - **Trackio Monitoring**: $TRACKIO_URL - **Experiment Data**: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO - **Security**: Trackio Space HF_TOKEN switched to read-only token for security $(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then echo "- **Demo Space**: https://huggingface.co/spaces/$HF_USERNAME/${REPO_NAME}-demo" fi) ## Next Steps 1. Monitor training progress in your Trackio Space 2. Check the model repository on Hugging Face Hub 3. Use the model in your applications 4. Share your results with the community ## Files Created - Training configuration: \`$CONFIG_FILE\` - Model checkpoint: \`$OUTPUT_DIR/\` - Training logs: \`training.log\` - Summary report: \`training_summary.md\` EOF print_status "Summary report saved to: training_summary.md" # Final summary echo "" print_header "🎉 End-to-End Pipeline Completed Successfully!" echo "==================================================" echo "" echo "📊 Model: https://huggingface.co/$REPO_NAME" echo "📈 Trackio: $TRACKIO_URL" echo "📋 Experiment: $EXPERIMENT_NAME" echo "📊 Dataset: https://huggingface.co/datasets/$TRACKIO_DATASET_REPO" $(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then echo "🎮 Demo: https://huggingface.co/spaces/$HF_USERNAME/${REPO_SHORT}-demo" fi) echo "" echo "📋 Summary report saved to: training_summary.md" echo "" echo "🚀 Next steps:" echo "1. Monitor training progress in your Trackio Space" echo "2. Check the model repository on Hugging Face Hub" echo "3. Your Trackio Space HF_TOKEN is now secured with read-only permissions" $(if [ "$DEPLOY_DEMO" = "y" ] || [ "$DEPLOY_DEMO" = "Y" ]; then echo "3. Make your huggingface space a ZeroGPU Space & Test your model" fi) echo "5. Use the model in your applications" echo "6. Share your results with the community" echo "" print_status "Pipeline completed successfully!"