Spaces:
Running
Running
File size: 25,730 Bytes
a3a3978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Voxtral ASR Fine-tuning - Architecture Diagrams</title>
<script type="module">
import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@10.6.1/dist/mermaid.esm.min.mjs';
mermaid.initialize({
startOnLoad: true,
theme: 'base',
themeVariables: {
primaryColor: '#e3f2fd',
primaryTextColor: '#1976d2',
primaryBorderColor: '#01579b',
lineColor: '#424242',
secondaryColor: '#fff3e0',
tertiaryColor: '#fce4ec',
background: '#ffffff',
mainBkg: '#ffffff',
secondBkg: '#f5f5f5',
textColor: '#333333'
},
flowchart: {
useMaxWidth: true,
htmlLabels: true,
curve: 'basis'
},
sequence: {
useMaxWidth: true
}
});
</script>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
line-height: 1.6;
color: #333;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background: #f8f9fa;
}
.header {
text-align: center;
margin-bottom: 40px;
padding: 20px;
background: white;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.diagram-container {
background: white;
margin: 20px 0;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.diagram-title {
font-size: 1.5em;
font-weight: bold;
margin-bottom: 15px;
color: #1976d2;
border-bottom: 2px solid #e3f2fd;
padding-bottom: 10px;
}
.diagram-description {
margin-bottom: 20px;
color: #666;
font-style: italic;
}
.navigation {
position: fixed;
top: 20px;
right: 20px;
background: white;
padding: 15px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
max-width: 200px;
}
.nav-link {
display: block;
padding: 8px 0;
color: #1976d2;
text-decoration: none;
border-bottom: 1px solid #eee;
}
.nav-link:hover {
color: #01579b;
text-decoration: underline;
}
.nav-link:last-child {
border-bottom: none;
}
.code-toggle {
background: #f5f5f5;
border: 1px solid #ddd;
padding: 10px;
margin: 10px 0;
border-radius: 4px;
cursor: pointer;
font-size: 0.9em;
}
.mermaid-code {
display: none;
background: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 4px;
padding: 15px;
margin: 10px 0;
font-family: 'Courier New', monospace;
font-size: 0.85em;
white-space: pre-wrap;
overflow-x: auto;
}
.download-btn {
background: #1976d2;
color: white;
border: none;
padding: 8px 16px;
border-radius: 4px;
cursor: pointer;
font-size: 0.9em;
margin: 10px 5px 10px 0;
}
.download-btn:hover {
background: #01579b;
}
@media print {
.navigation, .code-toggle, .download-btn {
display: none;
}
.diagram-container {
break-inside: avoid;
margin: 10px 0;
}
}
</style>
</head>
<body>
<div class="header">
<h1>π― Voxtral ASR Fine-tuning</h1>
<h2>Architecture & Workflow Diagrams</h2>
<p>Interactive documentation with Mermaid diagrams</p>
</div>
<nav class="navigation">
<strong>Quick Navigation</strong>
<a href="#overview" class="nav-link">Overview</a>
<a href="#architecture" class="nav-link">Architecture</a>
<a href="#interface" class="nav-link">Interface Workflow</a>
<a href="#training" class="nav-link">Training Pipeline</a>
<a href="#deployment" class="nav-link">Deployment Pipeline</a>
<a href="#dataflow" class="nav-link">Data Flow</a>
</nav>
<div id="overview" class="diagram-container">
<div class="diagram-title">π Documentation Overview</div>
<div class="diagram-description">
High-level overview of the Voxtral ASR Fine-tuning application and its documentation structure.
</div>
<div class="mermaid">
graph TD
START(["Voxtral ASR Fine-tuning App"]) --> OVERVIEW{Choose Documentation}
OVERVIEW --> ARCH["Architecture Overview"]
OVERVIEW --> WORKFLOW["Interface Workflow"]
OVERVIEW --> TRAINING["Training Pipeline"]
OVERVIEW --> DEPLOYMENT["Deployment Pipeline"]
OVERVIEW --> DATAFLOW["Data Flow"]
ARCH --> ARCH_DIAG["High-level Architecture<br/>System Components & Layers"]
WORKFLOW --> WORKFLOW_DIAG["User Journey<br/>Recording β Training β Demo"]
TRAINING --> TRAINING_DIAG["Training Scripts<br/>Data β Model β Results"]
DEPLOYMENT --> DEPLOYMENT_DIAG["Publishing & Demo<br/>Model β Hub β Space"]
DATAFLOW --> DATAFLOW_DIAG["Complete Data Journey<br/>Input β Processing β Output"]
subgraph "Core Components"
INTERFACE["interface.py<br/>Gradio Web UI"]
TRAIN_SCRIPTS["scripts/train*.py<br/>Training Scripts"]
DEPLOY_SCRIPT["scripts/deploy_demo_space.py<br/>Demo Deployment"]
PUSH_SCRIPT["scripts/push_to_huggingface.py<br/>Model Publishing"]
end
subgraph "Key Data Formats"
JSONL["JSONL Dataset<br/>{'audio_path': '...', 'text': '...'}"]
HFDATA["HF Hub Models<br/>username/model-name"]
SPACES["HF Spaces<br/>Interactive Demos"]
end
INTERFACE --> WORKFLOW
TRAIN_SCRIPTS --> TRAINING
DEPLOY_SCRIPT --> DEPLOYMENT
PUSH_SCRIPT --> DEPLOYMENT
JSONL --> DATAFLOW
HFDATA --> DEPLOYMENT
SPACES --> DEPLOYMENT
classDef entry fill:#e3f2fd,stroke:#1976d2,stroke-width:3px
classDef category fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef diagram fill:#e8f5e8,stroke:#388e3c,stroke-width:2px
classDef component fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef data fill:#e1f5fe,stroke:#0277bd,stroke-width:2px
class START entry
class OVERVIEW,ARCH,WORKFLOW,TRAINING,DEPLOYMENT,DATAFLOW category
class ARCH_DIAG,WORKFLOW_DIAG,TRAINING_DIAG,DEPLOYMENT_DIAG,DATAFLOW_DIAG diagram
class INTERFACE,TRAIN_SCRIPTS,DEPLOY_SCRIPT,PUSH_SCRIPT component
class JSONL,HFDATA,SPACES data
</div>
</div>
<div id="architecture" class="diagram-container">
<div class="diagram-title">System Architecture</div>
<div class="diagram-description">
High-level architecture showing the main components and their relationships in the Voxtral ASR Fine-tuning application.
</div>
<div class="mermaid">
graph TB
subgraph "User Interface"
UI["Gradio Web Interface<br/>interface.py"]
REC["Audio Recording<br/>Microphone Input"]
UP["File Upload<br/>WAV/FLAC files"]
end
subgraph "Data Processing"
DP["Data Processing<br/>Audio resampling<br/>JSONL creation"]
DS["Dataset Management<br/>NVIDIA Granary<br/>Local datasets"]
end
subgraph "Training Pipeline"
TF["Full Fine-tuning<br/>scripts/train.py"]
TL["LoRA Fine-tuning<br/>scripts/train_lora.py"]
TI["Trackio Integration<br/>Experiment Tracking"]
end
subgraph "Model Management"
MM["Model Management<br/>Hugging Face Hub<br/>Local storage"]
MC["Model Card Generation<br/>scripts/generate_model_card.py"]
end
subgraph "Deployment & Demo"
DEP["Demo Space Deployment<br/>scripts/deploy_demo_space.py"]
HF["HF Spaces<br/>Interactive Demo"]
end
subgraph "External Services"
HFH["Hugging Face Hub<br/>Models & Datasets"]
GRAN["NVIDIA Granary<br/>Multilingual ASR Dataset"]
TRACK["Trackio Spaces<br/>Experiment Tracking"]
end
UI --> DP
REC --> DP
UP --> DP
DP --> DS
DS --> TF
DS --> TL
TF --> TI
TL --> TI
TF --> MM
TL --> MM
MM --> MC
MM --> DEP
DEP --> HF
DS -.-> HFH
MM -.-> HFH
TI -.-> TRACK
DS -.-> GRAN
classDef interface fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef processing fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef training fill:#e8f5e8,stroke:#1b5e20,stroke-width:2px
classDef management fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef deployment fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef external fill:#f5f5f5,stroke:#424242,stroke-width:2px
class UI,REC,UP interface
class DP,DS processing
class TF,TL,TI training
class MM,MC management
class DEP,HF deployment
class HFH,GRAN,TRACK external
</div>
</div>
<div id="interface" class="diagram-container">
<div class="diagram-title">Interface Workflow</div>
<div class="diagram-description">
Complete user journey through the Voxtral ASR Fine-tuning interface, from language selection to demo deployment.
</div>
<div class="mermaid">
flowchart TD
START(["User Opens Interface"]) --> LANG["Language Selection<br/>Choose from 25+ languages"]
LANG --> PHRASES["Load Phrases<br/>From NVIDIA Granary"]
PHRASES --> RECORD["Recording Interface<br/>Display phrases + audio recording"]
RECORD --> |User Records| PROCESS_REC["Process Recordings<br/>Save WAV files + transcripts"]
RECORD --> |Upload Files| PROCESS_UPLOAD["Process Uploads<br/>Handle existing files + transcripts"]
PROCESS_REC --> JSONL["Create JSONL Dataset<br/>{'audio_path': '...', 'text': '...'}"]
PROCESS_UPLOAD --> JSONL
JSONL --> CONFIG["Training Configuration<br/>Model, LoRA/full, hyperparameters"]
CONFIG --> TRAIN["Training Process<br/>Execute train.py or train_lora.py"]
TRAIN --> PUSH["Push to Hub<br/>Model + metadata to HF Hub"]
TRAIN --> CARD["Generate Model Card<br/>Automated documentation"]
PUSH --> DEPLOY["Deploy Demo Space<br/>Interactive demo on HF Spaces"]
DEPLOY --> END(["Demo Ready<br/>Interactive ASR Demo"])
PUSH -.-> END
CARD -.-> END
classDef start fill:#e3f2fd,stroke:#1976d2,stroke-width:3px
classDef process fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef decision fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef terminal fill:#e8f5e8,stroke:#388e3c,stroke-width:3px
class START start
class END terminal
class LANG,PHRASES,RECORD,PROCESS_REC,PROCESS_UPLOAD,JSONL,CONFIG,TRAIN,PUSH,CARD,DEPLOY process
</div>
</div>
<div id="training" class="diagram-container">
<div class="diagram-title">Training Pipeline</div>
<div class="diagram-description">
Detailed training pipeline showing how data flows through training scripts and supporting infrastructure.
</div>
<div class="mermaid">
graph TB
subgraph "Data Sources"
JSONL["JSONL Dataset<br/>{'audio_path': '...', 'text': '...'}"]
GRANARY["NVIDIA Granary Dataset<br/>Multilingual ASR Data"]
HFDATA["HF Hub Datasets<br/>Community Datasets"]
end
subgraph "Data Processing"
LOADER["Dataset Loader<br/>_load_jsonl_dataset()"]
CASTER["Audio Casting<br/>16kHz resampling"]
COLLATOR["VoxtralDataCollator<br/>Audio + Text Processing"]
end
subgraph "Training Scripts"
TRAIN_FULL["Full Fine-tuning<br/>scripts/train.py"]
TRAIN_LORA["LoRA Fine-tuning<br/>scripts/train_lora.py"]
subgraph "Training Components"
MODEL_INIT["Model Initialization<br/>VoxtralForConditionalGeneration"]
LORA_CONFIG["LoRA Configuration<br/>LoraConfig + get_peft_model"]
PROCESSOR_INIT["Processor Initialization<br/>VoxtralProcessor"]
end
end
subgraph "Training Infrastructure"
TRACKIO_INIT["Trackio Integration<br/>Experiment Tracking"]
HF_TRAINER["Hugging Face Trainer<br/>TrainingArguments + Trainer"]
TORCH_DEVICE["Torch Device Setup<br/>GPU/CPU Detection"]
end
subgraph "Training Process"
FORWARD_PASS["Forward Pass<br/>Audio Processing + Generation"]
LOSS_CALC["Loss Calculation<br/>Masked Language Modeling"]
BACKWARD_PASS["Backward Pass<br/>Gradient Computation"]
OPTIMIZER_STEP["Optimizer Step<br/>Parameter Updates"]
LOGGING["Metrics Logging<br/>Loss, Perplexity, etc."]
end
subgraph "Model Management"
CHECKPOINT_SAVING["Checkpoint Saving<br/>Model snapshots"]
MODEL_SAVING["Final Model Saving<br/>Processor + Model"]
LOCAL_STORAGE["Local Storage<br/>outputs/ directory"]
end
LOADER --> CASTER
CASTER --> COLLATOR
COLLATOR --> TRAIN_FULL
COLLATOR --> TRAIN_LORA
TRAIN_FULL --> MODEL_INIT
TRAIN_LORA --> MODEL_INIT
TRAIN_LORA --> LORA_CONFIG
MODEL_INIT --> PROCESSOR_INIT
LORA_CONFIG --> PROCESSOR_INIT
PROCESSOR_INIT --> TRACKIO_INIT
PROCESSOR_INIT --> HF_TRAINER
PROCESSOR_INIT --> TORCH_DEVICE
TRACKIO_INIT --> HF_TRAINER
TORCH_DEVICE --> HF_TRAINER
HF_TRAINER --> FORWARD_PASS
FORWARD_PASS --> LOSS_CALC
LOSS_CALC --> BACKWARD_PASS
BACKWARD_PASS --> OPTIMIZER_STEP
OPTIMIZER_STEP --> LOGGING
LOGGING --> CHECKPOINT_SAVING
LOGGING --> TRACKIO_INIT
HF_TRAINER --> MODEL_SAVING
MODEL_SAVING --> LOCAL_STORAGE
JSONL --> LOADER
GRANARY --> LOADER
HFDATA --> LOADER
classDef input fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
classDef processing fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef training fill:#e8f5e8,stroke:#388e3c,stroke-width:2px
classDef infrastructure fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef execution fill:#fce4ec,stroke:#c2185b,stroke-width:2px
classDef output fill:#f5f5f5,stroke:#424242,stroke-width:2px
class JSONL,GRANARY,HFDATA input
class LOADER,CASTER,COLLATOR processing
class TRAIN_FULL,TRAIN_LORA,MODEL_INIT,LORA_CONFIG,PROCESSOR_INIT training
class TRACKIO_INIT,HF_TRAINER,TORCH_DEVICE infrastructure
class FORWARD_PASS,LOSS_CALC,BACKWARD_PASS,OPTIMIZER_STEP,LOGGING execution
class CHECKPOINT_SAVING,MODEL_SAVING,LOCAL_STORAGE output
</div>
</div>
<div id="deployment" class="diagram-container">
<div class="diagram-title">Deployment Pipeline</div>
<div class="diagram-description">
Model publishing and demo deployment process from trained model to live interactive demo.
</div>
<div class="mermaid">
graph TB
subgraph "Inputs"
TRAINED_MODEL["Trained Model<br/>Local directory"]
TRAINING_CONFIG["Training Config<br/>JSON/YAML"]
TRAINING_RESULTS["Training Results<br/>Metrics & logs"]
MODEL_METADATA["Model Metadata<br/>Name, description, etc."]
end
subgraph "Model Publishing"
PUSH_SCRIPT["push_to_huggingface.py<br/>Model Publisher"]
subgraph "Publishing Steps"
REPO_CREATION["Repository Creation<br/>HF Hub API"]
FILE_UPLOAD["File Upload<br/>Model files to HF"]
METADATA_UPLOAD["Metadata Upload<br/>Config & results"]
end
end
subgraph "Model Card Generation"
CARD_SCRIPT["generate_model_card.py<br/>Card Generator"]
subgraph "Card Components"
TEMPLATE_LOAD["Template Loading<br/>model_card.md"]
VARIABLE_REPLACEMENT["Variable Replacement<br/>Config injection"]
CONDITIONAL_PROCESSING["Conditional Sections<br/>Quantized models, etc."]
end
end
subgraph "Demo Space Deployment"
DEPLOY_SCRIPT["deploy_demo_space.py<br/>Space Deployer"]
subgraph "Space Setup"
SPACE_CREATION["Space Repository<br/>Create HF Space"]
TEMPLATE_COPY["Template Copying<br/>demo_voxtral/ files"]
ENV_INJECTION["Environment Setup<br/>Model config injection"]
SECRET_SETUP["Secret Configuration<br/>HF_TOKEN, model vars"]
end
end
subgraph "Space Building"
BUILD_TRIGGER[Build Trigger<br/>Automatic build start]
DEPENDENCY_INSTALL[Dependency Installation<br/>requirements.txt]
MODEL_DOWNLOAD[Model Download<br/>From HF Hub]
APP_INITIALIZATION[App Initialization<br/>Gradio app setup]
end
subgraph "Live Demo Space"
GRADIO_INTERFACE[Gradio Interface<br/>Interactive demo]
MODEL_INFERENCE[Model Inference<br/>Real-time ASR]
USER_INTERACTION[User Interaction<br/>Audio upload/playback]
end
subgraph "External Services"
HF_HUB[Hugging Face Hub<br/>Model & Space hosting]
HF_SPACES[HF Spaces Platform<br/>Demo hosting]
end
TRAINED_MODEL --> PUSH_SCRIPT
TRAINING_CONFIG --> PUSH_SCRIPT
TRAINING_RESULTS --> PUSH_SCRIPT
MODEL_METADATA --> PUSH_SCRIPT
PUSH_SCRIPT --> REPO_CREATION
REPO_CREATION --> FILE_UPLOAD
FILE_UPLOAD --> METADATA_UPLOAD
METADATA_UPLOAD --> CARD_SCRIPT
TRAINING_CONFIG --> CARD_SCRIPT
TRAINING_RESULTS --> CARD_SCRIPT
CARD_SCRIPT --> TEMPLATE_LOAD
TEMPLATE_LOAD --> VARIABLE_REPLACEMENT
VARIABLE_REPLACEMENT --> CONDITIONAL_PROCESSING
CONDITIONAL_PROCESSING --> DEPLOY_SCRIPT
METADATA_UPLOAD --> DEPLOY_SCRIPT
DEPLOY_SCRIPT --> SPACE_CREATION
SPACE_CREATION --> TEMPLATE_COPY
TEMPLATE_COPY --> ENV_INJECTION
ENV_INJECTION --> SECRET_SETUP
SECRET_SETUP --> BUILD_TRIGGER
BUILD_TRIGGER --> DEPENDENCY_INSTALL
DEPENDENCY_INSTALL --> MODEL_DOWNLOAD
MODEL_DOWNLOAD --> APP_INITIALIZATION
APP_INITIALIZATION --> GRADIO_INTERFACE
GRADIO_INTERFACE --> MODEL_INFERENCE
MODEL_INFERENCE --> USER_INTERACTION
HF_HUB --> MODEL_DOWNLOAD
HF_SPACES --> GRADIO_INTERFACE
classDef input fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
classDef publishing fill:#e8f5e8,stroke:#388e3c,stroke-width:2px
classDef generation fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef deployment fill:#fce4ec,stroke:#c2185b,stroke-width:2px
classDef building fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef demo fill:#e1f5fe,stroke:#0277bd,stroke-width:2px
classDef external fill:#f5f5f5,stroke:#424242,stroke-width:2px
class TRAINED_MODEL,TRAINING_CONFIG,TRAINING_RESULTS,MODEL_METADATA input
class PUSH_SCRIPT,REPO_CREATION,FILE_UPLOAD,METADATA_UPLOAD publishing
class CARD_SCRIPT,TEMPLATE_LOAD,VARIABLE_REPLACEMENT,CONDITIONAL_PROCESSING generation
class DEPLOY_SCRIPT,SPACE_CREATION,TEMPLATE_COPY,ENV_INJECTION,SECRET_SETUP deployment
class BUILD_TRIGGER,DEPENDENCY_INSTALL,MODEL_DOWNLOAD,APP_INITIALIZATION building
class GRADIO_INTERFACE,MODEL_INFERENCE,USER_INTERACTION demo
class HF_HUB,HF_SPACES external
</div>
</div>
<div id="dataflow" class="diagram-container">
<div class="diagram-title">Data Flow</div>
<div class="diagram-description">
Complete data journey through the Voxtral ASR Fine-tuning application from user input to deployed demo.
</div>
<div class="mermaid">
flowchart TD
subgraph "User Input"
MIC["Microphone Recording<br/>Raw audio + timestamps"]
FILE["File Upload<br/>WAV/FLAC files"]
TEXT["Manual Transcripts<br/>Text input"]
LANG["Language Selection<br/>25+ languages"]
end
subgraph "Data Processing"
AUDIO_PROC["Audio Processing<br/>Resampling to 16kHz<br/>Format conversion"]
TEXT_PROC["Text Processing<br/>Transcript validation<br/>Cleaning & formatting"]
JSONL_CONV["JSONL Conversion<br/>{'audio_path': '...', 'text': '...'}"]
end
subgraph "Dataset Storage"
LOCAL_DS["Local Dataset<br/>datasets/voxtral_user/<br/>data.jsonl + wavs/"]
HF_DS["HF Hub Dataset<br/>username/dataset-name<br/>Public sharing"]
end
subgraph "Training Data Pipeline"
DS_LOADER["Dataset Loader<br/>_load_jsonl_dataset()<br/>or load_dataset()"]
AUDIO_CAST["Audio Casting<br/>Audio(sampling_rate=16000)"]
TRAIN_SPLIT["Train Split<br/>train_dataset"]
EVAL_SPLIT["Eval Split<br/>eval_dataset"]
end
subgraph "Model Training"
COLLATOR["VoxtralDataCollator<br/>Audio + Text batching<br/>Prompt construction"]
FORWARD["Forward Pass<br/>Audio β Features β Text"]
LOSS["Loss Calculation<br/>Masked LM loss"]
BACKWARD["Backward Pass<br/>Gradient computation"]
OPTIMIZE["Parameter Updates<br/>LoRA or full fine-tuning"]
end
subgraph "Training Outputs"
MODEL_FILES["Model Files<br/>model.safetensors<br/>config.json<br/>tokenizer.json"]
TRAINING_LOGS["Training Logs<br/>train_results.json<br/>training_config.json<br/>loss curves"]
CHECKPOINTS["Checkpoints<br/>Intermediate models<br/>best model tracking"]
end
subgraph "Publishing Pipeline"
HF_REPO["HF Repository<br/>username/model-name<br/>Model hosting"]
MODEL_CARD["Model Card<br/>README.md<br/>Training details<br/>Usage examples"]
METADATA["Training Metadata<br/>Config + results<br/>Performance metrics"]
end
subgraph "Demo Deployment"
SPACE_REPO["HF Space Repository<br/>username/model-name-demo<br/>Demo hosting"]
DEMO_APP["Demo Application<br/>Gradio interface<br/>Real-time inference"]
ENV_VARS["Environment Config<br/>HF_MODEL_ID<br/>MODEL_NAME<br/>secrets"]
end
MIC --> AUDIO_PROC
FILE --> AUDIO_PROC
TEXT --> TEXT_PROC
LANG --> TEXT_PROC
AUDIO_PROC --> JSONL_CONV
TEXT_PROC --> JSONL_CONV
JSONL_CONV --> LOCAL_DS
LOCAL_DS --> HF_DS
LOCAL_DS --> DS_LOADER
HF_DS --> DS_LOADER
DS_LOADER --> AUDIO_CAST
AUDIO_CAST --> TRAIN_SPLIT
AUDIO_CAST --> EVAL_SPLIT
TRAIN_SPLIT --> COLLATOR
EVAL_SPLIT --> COLLATOR
COLLATOR --> FORWARD
FORWARD --> LOSS
LOSS --> BACKWARD
BACKWARD --> OPTIMIZE
OPTIMIZE --> MODEL_FILES
OPTIMIZE --> TRAINING_LOGS
OPTIMIZE --> CHECKPOINTS
MODEL_FILES --> HF_REPO
TRAINING_LOGS --> HF_REPO
CHECKPOINTS --> HF_REPO
HF_REPO --> MODEL_CARD
TRAINING_LOGS --> MODEL_CARD
MODEL_CARD --> SPACE_REPO
HF_REPO --> SPACE_REPO
ENV_VARS --> SPACE_REPO
SPACE_REPO --> DEMO_APP
classDef input fill:#e3f2fd,stroke:#1976d2,stroke-width:2px
classDef processing fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
classDef storage fill:#fff3e0,stroke:#f57c00,stroke-width:2px
classDef training fill:#e8f5e8,stroke:#388e3c,stroke-width:2px
classDef output fill:#fce4ec,stroke:#c2185b,stroke-width:2px
classDef publishing fill:#e1f5fe,stroke:#0277bd,stroke-width:2px
classDef deployment fill:#f5f5f5,stroke:#424242,stroke-width:2px
class MIC,FILE,TEXT,LANG input
class AUDIO_PROC,TEXT_PROC,JSONL_CONV processing
class LOCAL_DS,HF_DS storage
class DS_LOADER,AUDIO_CAST,TRAIN_SPLIT,EVAL_SPLIT,COLLATOR,FORWARD,LOSS,BACKWARD,OPTIMIZE training
class MODEL_FILES,TRAINING_LOGS,CHECKPOINTS output
class HF_REPO,MODEL_CARD,METADATA publishing
class SPACE_REPO,DEMO_APP,ENV_VARS deployment
</div>
</div>
<script>
// Toggle mermaid code visibility
function toggleCode(diagramId) {
const codeBlock = document.querySelector(`#${diagramId} .mermaid-code`);
if (codeBlock.style.display === 'none' || codeBlock.style.display === '') {
codeBlock.style.display = 'block';
} else {
codeBlock.style.display = 'none';
}
}
// Add toggle buttons to each diagram
document.addEventListener('DOMContentLoaded', function() {
const diagrams = document.querySelectorAll('.diagram-container');
diagrams.forEach((diagram, index) => {
const diagramId = diagram.id;
const mermaidDiv = diagram.querySelector('.mermaid');
if (mermaidDiv) {
// Create toggle button
const toggleBtn = document.createElement('button');
toggleBtn.className = 'code-toggle';
toggleBtn.textContent = 'π Show Mermaid Code';
toggleBtn.onclick = () => toggleCode(diagramId);
// Create code block
const codeBlock = document.createElement('pre');
codeBlock.className = 'mermaid-code';
codeBlock.textContent = mermaidDiv.textContent.trim();
// Insert elements
mermaidDiv.parentNode.insertBefore(toggleBtn, mermaidDiv);
mermaidDiv.parentNode.insertBefore(codeBlock, mermaidDiv.nextSibling);
}
});
});
// Print functionality
function printDiagrams() {
window.print();
}
</script>
</body>
</html>
|