Spaces:
Running
Running
File size: 35,425 Bytes
be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f a595d5a be9aa9f a595d5a be9aa9f a595d5a be9aa9f a595d5a be9aa9f a595d5a be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 7b2aced be9aa9f 676b3f3 7b2aced be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 7b2aced 676b3f3 7b2aced 676b3f3 be9aa9f 676b3f3 be9aa9f 676b3f3 be9aa9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 |
#!/usr/bin/env python3
"""
Push Trained Models and Datasets to Hugging Face Hub
Usage:
# Push a trained model
python push_to_huggingface.py model /path/to/model my-model-repo
# Push a dataset
python push_to_huggingface.py dataset /path/to/dataset.jsonl my-dataset-repo
Authentication:
Set HF_TOKEN environment variable or use --token:
export HF_TOKEN=your_token_here
"""
import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional
from datetime import datetime
# Set timeout for HF operations to prevent hanging
os.environ['HF_HUB_DOWNLOAD_TIMEOUT'] = '300'
os.environ['HF_HUB_UPLOAD_TIMEOUT'] = '600'
try:
from huggingface_hub import HfApi, create_repo, upload_file
HF_AVAILABLE = True
except ImportError:
HF_AVAILABLE = False
print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")
logger = logging.getLogger(__name__)
class HuggingFacePusher:
"""Push trained models to Hugging Face Hub"""
def __init__(
self,
model_path: str,
repo_name: str,
token: Optional[str] = None,
private: bool = False,
author_name: Optional[str] = None,
model_description: Optional[str] = None,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None
):
self.model_path = Path(model_path)
# Original user input (may be just the repo name without username)
self.repo_name = repo_name
self.token = token or os.getenv('HF_TOKEN')
self.private = private
self.author_name = author_name
self.model_description = model_description
# Model card generation details
self.model_name = model_name
self.dataset_name = dataset_name
# Initialize HF API
if HF_AVAILABLE:
self.api = HfApi(token=self.token)
else:
raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
# Resolve the full repo id (username/repo) if user only provided repo name
self.repo_id = self._resolve_repo_id(self.repo_name)
# Artifact type detection (full vs lora)
self.artifact_type: Optional[str] = None
logger.info(f"Initialized HuggingFacePusher for {self.repo_id}")
def _resolve_repo_id(self, repo_name: str) -> str:
"""Return a fully-qualified repo id in the form username/repo.
If the provided name already contains a '/', it is returned unchanged.
Otherwise, we attempt to derive the username from the authenticated token
or from the HF_USERNAME environment variable.
"""
try:
if "/" in repo_name:
return repo_name
# Need a username. Prefer API whoami(), fallback to env HF_USERNAME
username: Optional[str] = None
if self.token:
try:
user_info = self.api.whoami()
username = user_info.get("name") or user_info.get("username")
except Exception:
username = None
if not username:
username = os.getenv("HF_USERNAME")
if not username:
raise ValueError(
"Username could not be determined. Provide a token or set HF_USERNAME, "
"or pass a fully-qualified repo id 'username/repo'."
)
return f"{username}/{repo_name}"
except Exception as resolve_error:
logger.error(f"Failed to resolve full repo id for '{repo_name}': {resolve_error}")
# Fall back to provided value (may fail later at create/upload)
return repo_name
def create_repository(self) -> bool:
"""Create the Hugging Face repository"""
try:
logger.info(f"Creating repository: {self.repo_id}")
# Create repository with timeout handling
try:
# Create repository
create_repo(
repo_id=self.repo_id,
token=self.token,
private=self.private,
exist_ok=True
)
logger.info(f"β
Repository created: https://huggingface.co/{self.repo_id}")
return True
except Exception as e:
logger.error(f"β Repository creation failed: {e}")
return False
except Exception as e:
logger.error(f"β Failed to create repository: {e}")
return False
def _detect_artifact_type(self) -> str:
"""Detect whether output dir contains a full model or a LoRA adapter."""
# LoRA artifacts
lora_candidates = [
self.model_path / "adapter_config.json",
self.model_path / "adapter_model.safetensors",
self.model_path / "adapter_model.bin",
]
if any(p.exists() for p in lora_candidates) and (self.model_path / "adapter_config.json").exists():
return "lora"
# Full model artifacts
full_candidates = [
self.model_path / "config.json",
self.model_path / "model.safetensors",
self.model_path / "model.safetensors.index.json",
self.model_path / "pytorch_model.bin",
]
if any(p.exists() for p in full_candidates):
return "full"
return "unknown"
def validate_model_path(self) -> bool:
"""Validate that the model path contains required files for Voxtral full or LoRA."""
self.artifact_type = self._detect_artifact_type()
if self.artifact_type == "lora":
required = [self.model_path / "adapter_config.json"]
if not all(p.exists() for p in required):
logger.error("β LoRA artifacts missing required files (adapter_config.json)")
return False
# At least one adapter weight
if not ((self.model_path / "adapter_model.safetensors").exists() or (self.model_path / "adapter_model.bin").exists()):
logger.error("β LoRA artifacts missing adapter weights (adapter_model.safetensors or adapter_model.bin)")
return False
logger.info("β
Detected LoRA adapter artifacts")
return True
if self.artifact_type == "full":
# Relaxed set: require config.json and at least one model weights file
if not (self.model_path / "config.json").exists():
logger.error("β Missing config.json in model directory")
return False
if not ((self.model_path / "model.safetensors").exists() or (self.model_path / "model.safetensors.index.json").exists() or (self.model_path / "pytorch_model.bin").exists()):
logger.error("β Missing model weights file (model.safetensors or pytorch_model.bin)")
return False
logger.info("β
Detected full model artifacts")
return True
logger.error("β Could not detect model artifacts (neither full model nor LoRA)")
return False
def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a comprehensive model card using the generate_model_card.py script"""
try:
# Import the model card generator
import sys
sys.path.append(os.path.join(os.path.dirname(__file__)))
from generate_model_card import ModelCardGenerator, create_default_variables
# Create generator
generator = ModelCardGenerator()
# Create variables for the model card
variables = create_default_variables()
# Update with actual values
variables.update({
"repo_name": self.repo_id,
"model_name": self.repo_id.split('/')[-1],
"experiment_name": self.experiment_name or "model_push",
"dataset_repo": self.dataset_repo,
"author_name": self.author_name or "Model Author",
"model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
"training_config_type": self.training_config_type or "Custom Configuration",
"base_model": self.model_name or "HuggingFaceTB/SmolLM3-3B",
"dataset_name": self.dataset_name or "Custom Dataset",
"trainer_type": self.trainer_type or "SFTTrainer",
"batch_size": str(self.batch_size) if self.batch_size else "8",
"learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
"max_epochs": str(self.max_epochs) if self.max_epochs else "3",
"max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
"hardware_info": self._get_hardware_info(),
"trackio_url": self.trackio_url or "N/A",
"training_loss": str(results.get('train_loss', 'N/A')),
"validation_loss": str(results.get('eval_loss', 'N/A')),
"perplexity": str(results.get('perplexity', 'N/A')),
"quantized_models": False # Set to True if quantized models are available
})
# Generate the model card
model_card_content = generator.generate_model_card(variables)
logger.info("β
Model card generated using generate_model_card.py")
return model_card_content
except Exception as e:
logger.error(f"β Failed to generate model card with generator: {e}")
logger.info("π Falling back to simple model card")
return self._create_simple_model_card(training_config, results)
def _create_simple_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
"""Create a simple model card tailored for Voxtral ASR (supports full and LoRA)."""
tags = ["voxtral", "asr", "speech-to-text", "fine-tuning"]
if self.artifact_type == "lora":
tags.append("lora")
front_matter = {
"license": "apache-2.0",
"tags": tags,
"pipeline_tag": "automatic-speech-recognition",
}
fm_yaml = "---\n" + "\n".join([
"license: apache-2.0",
"tags:",
]) + "\n" + "\n".join([f"- {t}" for t in tags]) + "\n" + "pipeline_tag: automatic-speech-recognition\n---\n\n"
model_title = self.repo_id.split('/')[-1]
body = [
f"# {model_title}",
"",
("This repository contains a LoRA adapter for Voxtral ASR. "
"Merge the adapter with the base model or load via PEFT for inference." if self.artifact_type == "lora" else
"This repository contains a fine-tuned Voxtral ASR model."),
"",
"## Usage",
"",
("```python\nfrom transformers import AutoProcessor\nfrom peft import PeftModel\nfrom transformers import AutoModelForSeq2SeqLM\n\nbase_model_id = 'mistralai/Voxtral-Mini-3B-2507'\nprocessor = AutoProcessor.from_pretrained(base_model_id)\nbase_model = AutoModelForSeq2SeqLM.from_pretrained(base_model_id)\nmodel = PeftModel.from_pretrained(base_model, '{self.repo_id}')\n```" if self.artifact_type == "lora" else
f"""```python
from transformers import AutoProcessor, AutoModelForSeq2SeqLM
processor = AutoProcessor.from_pretrained("{self.repo_id}")
model = AutoModelForSeq2SeqLM.from_pretrained("{self.repo_id}")
```"""),
"",
"## Training Configuration",
"",
f"```json\n{json.dumps(training_config or {}, indent=2)}\n```",
"",
"## Training Results",
"",
f"```json\n{json.dumps(results or {}, indent=2)}\n```",
"",
f"**Hardware**: {self._get_hardware_info()}",
]
return fm_yaml + "\n".join(body)
def _get_model_size(self) -> float:
"""Get model size in GB"""
try:
total_size = 0
for file in self.model_path.rglob("*"):
if file.is_file():
total_size += file.stat().st_size
return total_size / (1024**3) # Convert to GB
except:
return 0.0
def _get_hardware_info(self) -> str:
"""Get hardware information"""
try:
import torch
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
return f"GPU: {gpu_name}"
else:
return "CPU"
except:
return "Unknown"
def upload_model_files(self) -> bool:
"""Upload model files to Hugging Face Hub with timeout protection"""
try:
logger.info("Uploading model files...")
# Upload all files in the model directory
for file_path in self.model_path.rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(self.model_path)
remote_path = str(relative_path)
logger.info(f"Uploading {relative_path}")
try:
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=remote_path,
repo_id=self.repo_id,
token=self.token
)
logger.info(f"β
Uploaded {relative_path}")
except Exception as e:
logger.error(f"β Failed to upload {relative_path}: {e}")
return False
logger.info("β
Model files uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload model files: {e}")
return False
def upload_training_results(self, results_path: str) -> bool:
"""Upload training results and logs"""
try:
logger.info("Uploading training results...")
results_files = [
"train_results.json",
"eval_results.json",
"training_config.json",
"training.log"
]
for file_name in results_files:
file_path = Path(results_path) / file_name
if file_path.exists():
logger.info(f"Uploading {file_name}")
upload_file(
path_or_fileobj=str(file_path),
path_in_repo=f"training_results/{file_name}",
repo_id=self.repo_id,
token=self.token
)
logger.info("β
Training results uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to upload training results: {e}")
return False
def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
"""Create and upload README.md"""
try:
logger.info("Creating README.md...")
readme_content = f"""# {self.repo_id.split('/')[-1]}
A fine-tuned SmolLM3 model for text generation tasks.
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")
# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Model Information
- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}
## Training Configuration
```json
{json.dumps(training_config, indent=2)}
```
## Performance Metrics
```json
{json.dumps(results, indent=2)}
```
## Experiment Tracking
Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`
## Files
- `model.safetensors.index.json`: Model weights (safetensors format)
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results
## License
MIT License
"""
# Write README to temporary file
readme_path = Path("temp_readme.md")
with open(readme_path, "w") as f:
f.write(readme_content)
# Upload README
upload_file(
path_or_fileobj=str(readme_path),
path_in_repo="README.md",
token=self.token,
repo_id=self.repo_id
)
# Clean up
readme_path.unlink()
logger.info("β
README.md uploaded successfully")
return True
except Exception as e:
logger.error(f"β Failed to create README: {e}")
return False
def push_model(self, training_config: Optional[Dict[str, Any]] = None,
results: Optional[Dict[str, Any]] = None) -> bool:
"""Complete model push process"""
logger.info(f"π Starting model push to {self.repo_id}")
# Validate model path
if not self.validate_model_path():
return False
# Create repository
if not self.create_repository():
return False
# Load training config and results if not provided
if training_config is None:
training_config = self._load_training_config()
if results is None:
results = self._load_training_results()
# Create and upload model card
model_card = self.create_model_card(training_config, results)
model_card_path = Path("temp_model_card.md")
with open(model_card_path, "w") as f:
f.write(model_card)
try:
upload_file(
path_or_fileobj=str(model_card_path),
path_in_repo="README.md",
repo_id=self.repo_id,
token=self.token
)
finally:
model_card_path.unlink()
# Upload model files
if not self.upload_model_files():
return False
# Upload training results
if results:
self.upload_training_results(str(self.model_path))
# Log success
logger.info(f"β
Model successfully pushed to {self.repo_id}")
logger.info(f"π Model successfully pushed to: https://huggingface.co/{self.repo_id}")
return True
def push_dataset(self, dataset_path: str, dataset_repo_name: str) -> bool:
"""Push dataset to Hugging Face Hub including audio files"""
logger.info(f"π Starting dataset push to {dataset_repo_name}")
try:
from huggingface_hub import create_repo, upload_file
import json
# Determine full dataset repo name
if "/" not in dataset_repo_name:
dataset_repo_name = f"{self.repo_id.split('/')[0]}/{dataset_repo_name}"
# Create dataset repository
try:
create_repo(dataset_repo_name, repo_type="dataset", token=self.token, exist_ok=True)
logger.info(f"β
Created dataset repository: {dataset_repo_name}")
except Exception as e:
if "already exists" not in str(e).lower():
logger.error(f"β Failed to create dataset repo: {e}")
return False
logger.info(f"π Dataset repository already exists: {dataset_repo_name}")
# Read the dataset file
dataset_file = Path(dataset_path)
if not dataset_file.exists():
logger.error(f"β Dataset file not found: {dataset_path}")
return False
# Read and process the JSONL to collect audio files and update paths
audio_files = []
updated_rows = []
total_audio_size = 0
with open(dataset_file, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f):
try:
row = json.loads(line.strip())
audio_path = row.get("audio_path", "")
if audio_path:
audio_file = Path(audio_path)
if audio_file.exists():
# Store the original file for upload
audio_files.append(audio_file)
total_audio_size += audio_file.stat().st_size
# Update path to be relative for the dataset
row["audio_path"] = f"audio/{audio_file.name}"
else:
logger.warning(f"Audio file not found: {audio_path}")
row["audio_path"] = "" # Clear missing files
updated_rows.append(row)
except json.JSONDecodeError as e:
logger.warning(f"Invalid JSON on line {line_num + 1}: {e}")
continue
# Create updated JSONL with relative paths
temp_jsonl_path = dataset_file.parent / "temp_data.jsonl"
with open(temp_jsonl_path, "w", encoding="utf-8") as f:
for row in updated_rows:
f.write(json.dumps(row, ensure_ascii=False) + "\n")
# Upload the updated JSONL file
upload_file(
path_or_fileobj=str(temp_jsonl_path),
path_in_repo="data.jsonl",
repo_id=dataset_repo_name,
repo_type="dataset",
token=self.token
)
logger.info(f"β
Uploaded dataset file: {dataset_file.name}")
# Clean up temp file
temp_jsonl_path.unlink()
# Upload audio files
uploaded_count = 0
for audio_file in audio_files:
try:
remote_path = f"audio/{audio_file.name}"
upload_file(
path_or_fileobj=str(audio_file),
path_in_repo=remote_path,
repo_id=dataset_repo_name,
repo_type="dataset",
token=self.token
)
uploaded_count += 1
logger.info(f"β
Uploaded audio file: {audio_file.name}")
except Exception as e:
logger.error(f"β Failed to upload {audio_file.name}: {e}")
# Calculate total dataset size
total_dataset_size = dataset_file.stat().st_size + total_audio_size
# Create a comprehensive dataset README
readme_content = f"""---
dataset_info:
features:
- name: audio_path
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: {dataset_file.stat().st_size}
num_examples: {len(updated_rows)}
download_size: {total_dataset_size}
dataset_size: {total_dataset_size}
tags:
- voxtral
- asr
- speech-to-text
- fine-tuning
- audio-dataset
- tonic
---
# Voxtral ASR Dataset
This dataset was created for fine-tuning Voxtral ASR models.
## Dataset Structure
- **audio_path**: Relative path to the audio file (stored in `audio/` directory)
- **text**: Transcription of the audio
## Dataset Statistics
- **Number of examples**: {len(updated_rows)}
- **Audio files uploaded**: {uploaded_count}
- **Total dataset size**: {total_dataset_size:,} bytes
## Usage
```python
from datasets import load_dataset, Audio
# Load dataset
dataset = load_dataset("{dataset_repo_name}")
# Load audio data
dataset = dataset.cast_column("audio_path", Audio())
# Access first example
print(dataset[0]["text"])
print(dataset[0]["audio_path"])
```
## Loading with Audio Decoding
```python
from datasets import load_dataset, Audio
# Load with automatic audio decoding
dataset = load_dataset("{dataset_repo_name}")
dataset = dataset.cast_column("audio_path", Audio(sampling_rate=16000))
# The audio column will contain the decoded audio arrays
audio_array = dataset[0]["audio_path"]["array"]
sampling_rate = dataset[0]["audio_path"]["sampling_rate"]
```
## Dataset Features
This dataset contains audio files with corresponding transcriptions for Voxtral ASR model fine-tuning.
All audio files are stored in the `audio/` directory and referenced using relative paths in the dataset.
## License
This dataset is created for research and educational purposes.
"""
# Upload README
readme_path = dataset_file.parent / "README.md"
with open(readme_path, "w") as f:
f.write(readme_content)
upload_file(
path_or_fileobj=str(readme_path),
path_in_repo="README.md",
repo_id=dataset_repo_name,
repo_type="dataset",
token=self.token
)
readme_path.unlink() # Clean up temp file
logger.info(f"β
Dataset README uploaded")
logger.info(f"π Dataset successfully pushed to: https://huggingface.co/datasets/{dataset_repo_name}")
logger.info(f"π Uploaded {len(updated_rows)} examples and {uploaded_count} audio files")
return True
except Exception as e:
logger.error(f"β Failed to push dataset: {e}")
return False
def test_dataset_push(self, dataset_path: str) -> bool:
"""Test dataset validation without uploading to Hugging Face Hub"""
logger.info(f"π§ͺ Testing dataset validation for {dataset_path}")
try:
# Read the dataset file
dataset_file = Path(dataset_path)
if not dataset_file.exists():
logger.error(f"β Dataset file not found: {dataset_path}")
return False
# Read and process the JSONL to validate audio files
audio_files = []
updated_rows = []
total_audio_size = 0
missing_files = []
invalid_json_lines = []
with open(dataset_file, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f):
try:
row = json.loads(line.strip())
audio_path = row.get("audio_path", "")
if audio_path:
audio_file = Path(audio_path)
if audio_file.exists():
# Store the file info for validation
audio_files.append(audio_file)
total_audio_size += audio_file.stat().st_size
else:
missing_files.append(str(audio_path))
updated_rows.append(row)
except json.JSONDecodeError as e:
invalid_json_lines.append(f"Line {line_num + 1}: {e}")
continue
# Report validation results
logger.info("π Dataset Validation Results:")
logger.info(f" - Total examples: {len(updated_rows)}")
logger.info(f" - Valid audio files: {len(audio_files)}")
logger.info(f" - Total audio size: {total_audio_size:,} bytes")
logger.info(f" - Missing audio files: {len(missing_files)}")
logger.info(f" - Invalid JSON lines: {len(invalid_json_lines)}")
if missing_files:
logger.warning("β οΈ Missing audio files:")
for missing in missing_files[:5]: # Show first 5
logger.warning(f" - {missing}")
if len(missing_files) > 5:
logger.warning(f" ... and {len(missing_files) - 5} more")
if invalid_json_lines:
logger.warning("β οΈ Invalid JSON lines:")
for invalid in invalid_json_lines[:3]: # Show first 3
logger.warning(f" - {invalid}")
if len(invalid_json_lines) > 3:
logger.warning(f" ... and {len(invalid_json_lines) - 3} more")
# Show sample of how paths will be converted
if audio_files:
logger.info("π Path conversion preview:")
for audio_file in audio_files[:3]: # Show first 3
logger.info(f" - {str(audio_file)} β audio/{audio_file.name}")
# Overall validation status
if len(updated_rows) == 0:
logger.error("β No valid examples found in dataset")
return False
if len(missing_files) > 0:
logger.warning("β οΈ Some audio files are missing - they will be skipped during upload")
else:
logger.info("β
All audio files found and valid")
logger.info("β
Dataset validation completed successfully!")
return True
except Exception as e:
logger.error(f"β Failed to validate dataset: {e}")
return False
def _load_training_config(self) -> Dict[str, Any]:
"""Load training configuration"""
config_path = self.model_path / "training_config.json"
if config_path.exists():
with open(config_path, "r") as f:
return json.load(f)
return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
def _load_training_results(self) -> Dict[str, Any]:
"""Load training results"""
results_path = self.model_path / "train_results.json"
if results_path.exists():
with open(results_path, "r") as f:
return json.load(f)
return {"final_loss": "Unknown", "total_steps": "Unknown"}
def parse_args():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
# Subcommands
subparsers = parser.add_subparsers(dest='command', help='Available commands')
# Model push subcommand
model_parser = subparsers.add_parser('model', help='Push trained model to Hugging Face Hub')
model_parser.add_argument('model_path', type=str, help='Path to trained model directory')
model_parser.add_argument('repo_name', type=str, help='Hugging Face repository name (repo-name). Username will be auto-detected from your token.')
model_parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
model_parser.add_argument('--private', action='store_true', help='Make repository private')
model_parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
model_parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
model_parser.add_argument('--model-name', type=str, default=None, help='Base model name')
model_parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')
# Dataset push subcommand
dataset_parser = subparsers.add_parser('dataset', help='Push dataset to Hugging Face Hub')
dataset_parser.add_argument('dataset_path', type=str, help='Path to dataset JSONL file')
dataset_parser.add_argument('repo_name', type=str, help='Hugging Face dataset repository name')
dataset_parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
dataset_parser.add_argument('--private', action='store_true', help='Make repository private')
dataset_parser.add_argument('--test', action='store_true', help='Test mode - validate dataset without uploading')
return parser.parse_args()
def main():
"""Main function"""
args = parse_args()
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
if not args.command:
logger.error("β No command specified. Use 'model' or 'dataset' subcommand.")
return 1
try:
if args.command == 'model':
logger.info("Starting model push to Hugging Face Hub")
# Initialize pusher
pusher = HuggingFacePusher(
model_path=args.model_path,
repo_name=args.repo_name,
token=args.token,
private=args.private,
author_name=args.author_name,
model_description=args.model_description,
model_name=args.model_name,
dataset_name=args.dataset_name
)
# Push model
success = pusher.push_model()
if success:
logger.info("β
Model push completed successfully!")
logger.info(f"π View your model at: https://huggingface.co/{args.repo_name}")
else:
logger.error("β Model push failed!")
return 1
elif args.command == 'dataset':
logger.info("Starting dataset push to Hugging Face Hub")
# Initialize pusher for dataset
pusher = HuggingFacePusher(
model_path="", # Not needed for dataset push
repo_name=args.repo_name,
token=args.token,
private=args.private
)
if getattr(args, 'test', False):
# Test mode - validate dataset without uploading
success = pusher.test_dataset_push(args.dataset_path)
if success:
logger.info("β
Dataset validation completed successfully!")
else:
logger.error("β Dataset validation failed!")
return 1
else:
# Push dataset
success = pusher.push_dataset(args.dataset_path, args.repo_name)
if success:
logger.info("β
Dataset push completed successfully!")
logger.info(f"π View your dataset at: https://huggingface.co/datasets/{args.repo_name}")
else:
logger.error("β Dataset push failed!")
return 1
except Exception as e:
logger.error(f"β Error during push: {e}")
return 1
return 0
if __name__ == "__main__":
exit(main()) |