File size: 35,425 Bytes
be9aa9f
 
676b3f3
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
676b3f3
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
be9aa9f
 
 
 
 
 
 
 
 
 
676b3f3
be9aa9f
 
 
 
676b3f3
be9aa9f
 
 
676b3f3
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
a595d5a
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a595d5a
 
 
 
 
 
 
be9aa9f
a595d5a
 
 
 
 
 
 
 
 
be9aa9f
a595d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a595d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
 
be9aa9f
676b3f3
be9aa9f
676b3f3
be9aa9f
 
 
676b3f3
be9aa9f
 
 
676b3f3
be9aa9f
 
 
676b3f3
be9aa9f
 
676b3f3
be9aa9f
 
 
 
 
676b3f3
be9aa9f
 
 
 
 
 
 
 
 
676b3f3
be9aa9f
 
 
676b3f3
be9aa9f
 
 
676b3f3
 
 
be9aa9f
676b3f3
be9aa9f
676b3f3
 
7b2aced
676b3f3
 
 
7b2aced
676b3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2aced
 
 
 
676b3f3
7b2aced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
7b2aced
676b3f3
 
 
 
 
 
 
7b2aced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
 
 
 
 
 
 
 
 
7b2aced
 
 
 
676b3f3
 
 
 
7b2aced
 
 
676b3f3
 
 
 
 
 
 
 
7b2aced
676b3f3
 
7b2aced
676b3f3
7b2aced
 
 
676b3f3
 
 
 
7b2aced
676b3f3
7b2aced
676b3f3
7b2aced
 
 
 
 
 
 
676b3f3
7b2aced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2aced
676b3f3
 
 
 
 
 
7b2aced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676b3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2aced
be9aa9f
 
 
 
 
 
676b3f3
be9aa9f
 
 
 
 
676b3f3
 
 
 
 
be9aa9f
676b3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b2aced
 
 
 
 
 
 
 
676b3f3
7b2aced
 
 
 
 
 
 
 
 
676b3f3
be9aa9f
676b3f3
be9aa9f
676b3f3
be9aa9f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
#!/usr/bin/env python3
"""
Push Trained Models and Datasets to Hugging Face Hub

Usage:
    # Push a trained model
    python push_to_huggingface.py model /path/to/model my-model-repo

    # Push a dataset
    python push_to_huggingface.py dataset /path/to/dataset.jsonl my-dataset-repo

Authentication:
Set HF_TOKEN environment variable or use --token:
    export HF_TOKEN=your_token_here
"""

import os
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, Any, Optional
from datetime import datetime

# Set timeout for HF operations to prevent hanging
os.environ['HF_HUB_DOWNLOAD_TIMEOUT'] = '300'
os.environ['HF_HUB_UPLOAD_TIMEOUT'] = '600'

try:
    from huggingface_hub import HfApi, create_repo, upload_file
    HF_AVAILABLE = True
except ImportError:
    HF_AVAILABLE = False
    print("Warning: huggingface_hub not available. Install with: pip install huggingface_hub")

logger = logging.getLogger(__name__)

class HuggingFacePusher:
    """Push trained models to Hugging Face Hub"""
    
    def __init__(
        self,
        model_path: str,
        repo_name: str,
        token: Optional[str] = None,
        private: bool = False,
        author_name: Optional[str] = None,
        model_description: Optional[str] = None,
        model_name: Optional[str] = None,
        dataset_name: Optional[str] = None
    ):
        self.model_path = Path(model_path)
        # Original user input (may be just the repo name without username)
        self.repo_name = repo_name
        self.token = token or os.getenv('HF_TOKEN')
        self.private = private
        self.author_name = author_name
        self.model_description = model_description

        # Model card generation details
        self.model_name = model_name
        self.dataset_name = dataset_name
        
        # Initialize HF API
        if HF_AVAILABLE:
            self.api = HfApi(token=self.token)
        else:
            raise ImportError("huggingface_hub is required. Install with: pip install huggingface_hub")
        
        # Resolve the full repo id (username/repo) if user only provided repo name
        self.repo_id = self._resolve_repo_id(self.repo_name)
        # Artifact type detection (full vs lora)
        self.artifact_type: Optional[str] = None

        logger.info(f"Initialized HuggingFacePusher for {self.repo_id}")

    def _resolve_repo_id(self, repo_name: str) -> str:
        """Return a fully-qualified repo id in the form username/repo.

        If the provided name already contains a '/', it is returned unchanged.
        Otherwise, we attempt to derive the username from the authenticated token
        or from the HF_USERNAME environment variable.
        """
        try:
            if "/" in repo_name:
                return repo_name

            # Need a username. Prefer API whoami(), fallback to env HF_USERNAME
            username: Optional[str] = None
            if self.token:
                try:
                    user_info = self.api.whoami()
                    username = user_info.get("name") or user_info.get("username")
                except Exception:
                    username = None

            if not username:
                username = os.getenv("HF_USERNAME")

            if not username:
                raise ValueError(
                    "Username could not be determined. Provide a token or set HF_USERNAME, "
                    "or pass a fully-qualified repo id 'username/repo'."
                )

            return f"{username}/{repo_name}"
        except Exception as resolve_error:
            logger.error(f"Failed to resolve full repo id for '{repo_name}': {resolve_error}")
            # Fall back to provided value (may fail later at create/upload)
            return repo_name
    
    def create_repository(self) -> bool:
        """Create the Hugging Face repository"""
        try:
            logger.info(f"Creating repository: {self.repo_id}")
            
            # Create repository with timeout handling
            try:
                # Create repository
                create_repo(
                    repo_id=self.repo_id,
                    token=self.token,
                    private=self.private,
                    exist_ok=True
                )
                
                logger.info(f"βœ… Repository created: https://huggingface.co/{self.repo_id}")
                return True
                
            except Exception as e:
                logger.error(f"❌ Repository creation failed: {e}")
                return False
            
        except Exception as e:
            logger.error(f"❌ Failed to create repository: {e}")
            return False
    
    def _detect_artifact_type(self) -> str:
        """Detect whether output dir contains a full model or a LoRA adapter."""
        # LoRA artifacts
        lora_candidates = [
            self.model_path / "adapter_config.json",
            self.model_path / "adapter_model.safetensors",
            self.model_path / "adapter_model.bin",
        ]
        if any(p.exists() for p in lora_candidates) and (self.model_path / "adapter_config.json").exists():
            return "lora"

        # Full model artifacts
        full_candidates = [
            self.model_path / "config.json",
            self.model_path / "model.safetensors",
            self.model_path / "model.safetensors.index.json",
            self.model_path / "pytorch_model.bin",
        ]
        if any(p.exists() for p in full_candidates):
            return "full"

        return "unknown"

    def validate_model_path(self) -> bool:
        """Validate that the model path contains required files for Voxtral full or LoRA."""
        self.artifact_type = self._detect_artifact_type()
        if self.artifact_type == "lora":
            required = [self.model_path / "adapter_config.json"]
            if not all(p.exists() for p in required):
                logger.error("❌ LoRA artifacts missing required files (adapter_config.json)")
                return False
            # At least one adapter weight
            if not ((self.model_path / "adapter_model.safetensors").exists() or (self.model_path / "adapter_model.bin").exists()):
                logger.error("❌ LoRA artifacts missing adapter weights (adapter_model.safetensors or adapter_model.bin)")
                return False
            logger.info("βœ… Detected LoRA adapter artifacts")
            return True

        if self.artifact_type == "full":
            # Relaxed set: require config.json and at least one model weights file
            if not (self.model_path / "config.json").exists():
                logger.error("❌ Missing config.json in model directory")
                return False
            if not ((self.model_path / "model.safetensors").exists() or (self.model_path / "model.safetensors.index.json").exists() or (self.model_path / "pytorch_model.bin").exists()):
                logger.error("❌ Missing model weights file (model.safetensors or pytorch_model.bin)")
                return False
            logger.info("βœ… Detected full model artifacts")
            return True

        logger.error("❌ Could not detect model artifacts (neither full model nor LoRA)")
        return False
    
    def create_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
        """Create a comprehensive model card using the generate_model_card.py script"""
        try:
            # Import the model card generator
            import sys
            sys.path.append(os.path.join(os.path.dirname(__file__)))
            from generate_model_card import ModelCardGenerator, create_default_variables
            
            # Create generator
            generator = ModelCardGenerator()
            
            # Create variables for the model card
            variables = create_default_variables()
            
            # Update with actual values
            variables.update({
                "repo_name": self.repo_id,
                "model_name": self.repo_id.split('/')[-1],
                "experiment_name": self.experiment_name or "model_push",
                "dataset_repo": self.dataset_repo,
                "author_name": self.author_name or "Model Author",
                "model_description": self.model_description or "A fine-tuned version of SmolLM3-3B for improved text generation capabilities.",
                "training_config_type": self.training_config_type or "Custom Configuration",
                "base_model": self.model_name or "HuggingFaceTB/SmolLM3-3B",
                "dataset_name": self.dataset_name or "Custom Dataset",
                "trainer_type": self.trainer_type or "SFTTrainer",
                "batch_size": str(self.batch_size) if self.batch_size else "8",
                "learning_rate": str(self.learning_rate) if self.learning_rate else "5e-6",
                "max_epochs": str(self.max_epochs) if self.max_epochs else "3",
                "max_seq_length": str(self.max_seq_length) if self.max_seq_length else "2048",
                "hardware_info": self._get_hardware_info(),
                "trackio_url": self.trackio_url or "N/A",
                "training_loss": str(results.get('train_loss', 'N/A')),
                "validation_loss": str(results.get('eval_loss', 'N/A')),
                "perplexity": str(results.get('perplexity', 'N/A')),
                "quantized_models": False  # Set to True if quantized models are available
            })
            
            # Generate the model card
            model_card_content = generator.generate_model_card(variables)
            
            logger.info("βœ… Model card generated using generate_model_card.py")
            return model_card_content
            
        except Exception as e:
            logger.error(f"❌ Failed to generate model card with generator: {e}")
            logger.info("πŸ”„ Falling back to simple model card")
            return self._create_simple_model_card(training_config, results)
    
    def _create_simple_model_card(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> str:
        """Create a simple model card tailored for Voxtral ASR (supports full and LoRA)."""
        tags = ["voxtral", "asr", "speech-to-text", "fine-tuning"]
        if self.artifact_type == "lora":
            tags.append("lora")
        front_matter = {
            "license": "apache-2.0",
            "tags": tags,
            "pipeline_tag": "automatic-speech-recognition",
        }
        fm_yaml = "---\n" + "\n".join([
            "license: apache-2.0",
            "tags:",
        ]) + "\n" + "\n".join([f"- {t}" for t in tags]) + "\n" + "pipeline_tag: automatic-speech-recognition\n---\n\n"
        model_title = self.repo_id.split('/')[-1]
        body = [
            f"# {model_title}",
            "",
            ("This repository contains a LoRA adapter for Voxtral ASR. "
             "Merge the adapter with the base model or load via PEFT for inference." if self.artifact_type == "lora" else
             "This repository contains a fine-tuned Voxtral ASR model."),
            "",
            "## Usage",
            "",
            ("```python\nfrom transformers import AutoProcessor\nfrom peft import PeftModel\nfrom transformers import AutoModelForSeq2SeqLM\n\nbase_model_id = 'mistralai/Voxtral-Mini-3B-2507'\nprocessor = AutoProcessor.from_pretrained(base_model_id)\nbase_model = AutoModelForSeq2SeqLM.from_pretrained(base_model_id)\nmodel = PeftModel.from_pretrained(base_model, '{self.repo_id}')\n```" if self.artifact_type == "lora" else
             f"""```python
from transformers import AutoProcessor, AutoModelForSeq2SeqLM

processor = AutoProcessor.from_pretrained("{self.repo_id}")
model = AutoModelForSeq2SeqLM.from_pretrained("{self.repo_id}")
```"""),
            "",
            "## Training Configuration",
            "",
            f"```json\n{json.dumps(training_config or {}, indent=2)}\n```",
            "",
            "## Training Results",
            "",
            f"```json\n{json.dumps(results or {}, indent=2)}\n```",
            "",
            f"**Hardware**: {self._get_hardware_info()}",
        ]
        return fm_yaml + "\n".join(body)
    
    def _get_model_size(self) -> float:
        """Get model size in GB"""
        try:
            total_size = 0
            for file in self.model_path.rglob("*"):
                if file.is_file():
                    total_size += file.stat().st_size
            return total_size / (1024**3)  # Convert to GB
        except:
            return 0.0
    
    def _get_hardware_info(self) -> str:
        """Get hardware information"""
        try:
            import torch
            if torch.cuda.is_available():
                gpu_name = torch.cuda.get_device_name(0)
                return f"GPU: {gpu_name}"
            else:
                return "CPU"
        except:
            return "Unknown"
    
    def upload_model_files(self) -> bool:
        """Upload model files to Hugging Face Hub with timeout protection"""
        try:
            logger.info("Uploading model files...")
            
            # Upload all files in the model directory
            for file_path in self.model_path.rglob("*"):
                if file_path.is_file():
                    relative_path = file_path.relative_to(self.model_path)
                    remote_path = str(relative_path)
                    
                    logger.info(f"Uploading {relative_path}")
                    
                    try:
                        upload_file(
                            path_or_fileobj=str(file_path),
                            path_in_repo=remote_path,
                            repo_id=self.repo_id,
                            token=self.token
                        )
                        logger.info(f"βœ… Uploaded {relative_path}")
                        
                    except Exception as e:
                        logger.error(f"❌ Failed to upload {relative_path}: {e}")
                        return False
            
            logger.info("βœ… Model files uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to upload model files: {e}")
            return False
    
    def upload_training_results(self, results_path: str) -> bool:
        """Upload training results and logs"""
        try:
            logger.info("Uploading training results...")
            
            results_files = [
                "train_results.json",
                "eval_results.json",
                "training_config.json",
                "training.log"
            ]
            
            for file_name in results_files:
                file_path = Path(results_path) / file_name
                if file_path.exists():
                    logger.info(f"Uploading {file_name}")
                    upload_file(
                        path_or_fileobj=str(file_path),
                        path_in_repo=f"training_results/{file_name}",
                        repo_id=self.repo_id,
                        token=self.token
                    )
            
            logger.info("βœ… Training results uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to upload training results: {e}")
            return False
    
    def create_readme(self, training_config: Dict[str, Any], results: Dict[str, Any]) -> bool:
        """Create and upload README.md"""
        try:
            logger.info("Creating README.md...")
            
            readme_content = f"""# {self.repo_id.split('/')[-1]}

A fine-tuned SmolLM3 model for text generation tasks.

## Quick Start

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("{self.repo_id}")
tokenizer = AutoTokenizer.from_pretrained("{self.repo_id}")

# Generate text
text = "Hello, how are you?"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Model Information

- **Base Model**: HuggingFaceTB/SmolLM3-3B
- **Fine-tuning Date**: {datetime.now().strftime('%Y-%m-%d')}
- **Model Size**: {self._get_model_size():.1f} GB
- **Training Steps**: {results.get('total_steps', 'Unknown')}
- **Final Loss**: {results.get('final_loss', 'Unknown')}
- **Dataset Repository**: {self.dataset_repo}

## Training Configuration

```json
{json.dumps(training_config, indent=2)}
```

## Performance Metrics

```json
{json.dumps(results, indent=2)}
```

## Experiment Tracking

Training metrics and configuration are stored in the HF Dataset repository: `{self.dataset_repo}`

## Files

- `model.safetensors.index.json`: Model weights (safetensors format)
- `config.json`: Model configuration
- `tokenizer.json`: Tokenizer configuration
- `training_results/`: Training logs and results

## License

MIT License
"""
            
            # Write README to temporary file
            readme_path = Path("temp_readme.md")
            with open(readme_path, "w") as f:
                f.write(readme_content)
            
            # Upload README
            upload_file(
                path_or_fileobj=str(readme_path),
                path_in_repo="README.md",
                token=self.token,
                repo_id=self.repo_id
            )
            
            # Clean up
            readme_path.unlink()
            
            logger.info("βœ… README.md uploaded successfully")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to create README: {e}")
            return False
    

    def push_model(self, training_config: Optional[Dict[str, Any]] = None,
                   results: Optional[Dict[str, Any]] = None) -> bool:
        """Complete model push process"""
        logger.info(f"πŸš€ Starting model push to {self.repo_id}")

        # Validate model path
        if not self.validate_model_path():
            return False

        # Create repository
        if not self.create_repository():
            return False

        # Load training config and results if not provided
        if training_config is None:
            training_config = self._load_training_config()

        if results is None:
            results = self._load_training_results()

        # Create and upload model card
        model_card = self.create_model_card(training_config, results)
        model_card_path = Path("temp_model_card.md")
        with open(model_card_path, "w") as f:
            f.write(model_card)

        try:
            upload_file(
                path_or_fileobj=str(model_card_path),
                path_in_repo="README.md",
                repo_id=self.repo_id,
                token=self.token
            )
        finally:
            model_card_path.unlink()

        # Upload model files
        if not self.upload_model_files():
            return False

        # Upload training results
        if results:
            self.upload_training_results(str(self.model_path))

        # Log success
        logger.info(f"βœ… Model successfully pushed to {self.repo_id}")
        logger.info(f"πŸŽ‰ Model successfully pushed to: https://huggingface.co/{self.repo_id}")

        return True

    def push_dataset(self, dataset_path: str, dataset_repo_name: str) -> bool:
        """Push dataset to Hugging Face Hub including audio files"""
        logger.info(f"πŸš€ Starting dataset push to {dataset_repo_name}")

        try:
            from huggingface_hub import create_repo, upload_file
            import json

            # Determine full dataset repo name
            if "/" not in dataset_repo_name:
                dataset_repo_name = f"{self.repo_id.split('/')[0]}/{dataset_repo_name}"

            # Create dataset repository
            try:
                create_repo(dataset_repo_name, repo_type="dataset", token=self.token, exist_ok=True)
                logger.info(f"βœ… Created dataset repository: {dataset_repo_name}")
            except Exception as e:
                if "already exists" not in str(e).lower():
                    logger.error(f"❌ Failed to create dataset repo: {e}")
                    return False
                logger.info(f"πŸ“ Dataset repository already exists: {dataset_repo_name}")

            # Read the dataset file
            dataset_file = Path(dataset_path)
            if not dataset_file.exists():
                logger.error(f"❌ Dataset file not found: {dataset_path}")
                return False

            # Read and process the JSONL to collect audio files and update paths
            audio_files = []
            updated_rows = []
            total_audio_size = 0

            with open(dataset_file, 'r', encoding='utf-8') as f:
                for line_num, line in enumerate(f):
                    try:
                        row = json.loads(line.strip())
                        audio_path = row.get("audio_path", "")

                        if audio_path:
                            audio_file = Path(audio_path)
                            if audio_file.exists():
                                # Store the original file for upload
                                audio_files.append(audio_file)
                                total_audio_size += audio_file.stat().st_size

                                # Update path to be relative for the dataset
                                row["audio_path"] = f"audio/{audio_file.name}"
                            else:
                                logger.warning(f"Audio file not found: {audio_path}")
                                row["audio_path"] = ""  # Clear missing files

                        updated_rows.append(row)
                    except json.JSONDecodeError as e:
                        logger.warning(f"Invalid JSON on line {line_num + 1}: {e}")
                        continue

            # Create updated JSONL with relative paths
            temp_jsonl_path = dataset_file.parent / "temp_data.jsonl"
            with open(temp_jsonl_path, "w", encoding="utf-8") as f:
                for row in updated_rows:
                    f.write(json.dumps(row, ensure_ascii=False) + "\n")

            # Upload the updated JSONL file
            upload_file(
                path_or_fileobj=str(temp_jsonl_path),
                path_in_repo="data.jsonl",
                repo_id=dataset_repo_name,
                repo_type="dataset",
                token=self.token
            )
            logger.info(f"βœ… Uploaded dataset file: {dataset_file.name}")

            # Clean up temp file
            temp_jsonl_path.unlink()

            # Upload audio files
            uploaded_count = 0
            for audio_file in audio_files:
                try:
                    remote_path = f"audio/{audio_file.name}"
                    upload_file(
                        path_or_fileobj=str(audio_file),
                        path_in_repo=remote_path,
                        repo_id=dataset_repo_name,
                        repo_type="dataset",
                        token=self.token
                    )
                    uploaded_count += 1
                    logger.info(f"βœ… Uploaded audio file: {audio_file.name}")
                except Exception as e:
                    logger.error(f"❌ Failed to upload {audio_file.name}: {e}")

            # Calculate total dataset size
            total_dataset_size = dataset_file.stat().st_size + total_audio_size

            # Create a comprehensive dataset README
            readme_content = f"""---
dataset_info:
  features:
    - name: audio_path
      dtype: string
    - name: text
      dtype: string
  splits:
    - name: train
      num_bytes: {dataset_file.stat().st_size}
      num_examples: {len(updated_rows)}
  download_size: {total_dataset_size}
  dataset_size: {total_dataset_size}
tags:
- voxtral
- asr
- speech-to-text
- fine-tuning
- audio-dataset
- tonic
---

# Voxtral ASR Dataset

This dataset was created for fine-tuning Voxtral ASR models.

## Dataset Structure

- **audio_path**: Relative path to the audio file (stored in `audio/` directory)
- **text**: Transcription of the audio

## Dataset Statistics

- **Number of examples**: {len(updated_rows)}
- **Audio files uploaded**: {uploaded_count}
- **Total dataset size**: {total_dataset_size:,} bytes

## Usage

```python
from datasets import load_dataset, Audio

# Load dataset
dataset = load_dataset("{dataset_repo_name}")

# Load audio data
dataset = dataset.cast_column("audio_path", Audio())

# Access first example
print(dataset[0]["text"])
print(dataset[0]["audio_path"])
```

## Loading with Audio Decoding

```python
from datasets import load_dataset, Audio

# Load with automatic audio decoding
dataset = load_dataset("{dataset_repo_name}")
dataset = dataset.cast_column("audio_path", Audio(sampling_rate=16000))

# The audio column will contain the decoded audio arrays
audio_array = dataset[0]["audio_path"]["array"]
sampling_rate = dataset[0]["audio_path"]["sampling_rate"]
```

## Dataset Features

This dataset contains audio files with corresponding transcriptions for Voxtral ASR model fine-tuning.
All audio files are stored in the `audio/` directory and referenced using relative paths in the dataset.

## License

This dataset is created for research and educational purposes.
"""

            # Upload README
            readme_path = dataset_file.parent / "README.md"
            with open(readme_path, "w") as f:
                f.write(readme_content)

            upload_file(
                path_or_fileobj=str(readme_path),
                path_in_repo="README.md",
                repo_id=dataset_repo_name,
                repo_type="dataset",
                token=self.token
            )

            readme_path.unlink()  # Clean up temp file

            logger.info(f"βœ… Dataset README uploaded")
            logger.info(f"πŸŽ‰ Dataset successfully pushed to: https://huggingface.co/datasets/{dataset_repo_name}")
            logger.info(f"πŸ“Š Uploaded {len(updated_rows)} examples and {uploaded_count} audio files")

            return True

        except Exception as e:
            logger.error(f"❌ Failed to push dataset: {e}")
            return False

    def test_dataset_push(self, dataset_path: str) -> bool:
        """Test dataset validation without uploading to Hugging Face Hub"""
        logger.info(f"πŸ§ͺ Testing dataset validation for {dataset_path}")

        try:
            # Read the dataset file
            dataset_file = Path(dataset_path)
            if not dataset_file.exists():
                logger.error(f"❌ Dataset file not found: {dataset_path}")
                return False

            # Read and process the JSONL to validate audio files
            audio_files = []
            updated_rows = []
            total_audio_size = 0
            missing_files = []
            invalid_json_lines = []

            with open(dataset_file, 'r', encoding='utf-8') as f:
                for line_num, line in enumerate(f):
                    try:
                        row = json.loads(line.strip())
                        audio_path = row.get("audio_path", "")

                        if audio_path:
                            audio_file = Path(audio_path)
                            if audio_file.exists():
                                # Store the file info for validation
                                audio_files.append(audio_file)
                                total_audio_size += audio_file.stat().st_size
                            else:
                                missing_files.append(str(audio_path))

                        updated_rows.append(row)
                    except json.JSONDecodeError as e:
                        invalid_json_lines.append(f"Line {line_num + 1}: {e}")
                        continue

            # Report validation results
            logger.info("πŸ“Š Dataset Validation Results:")
            logger.info(f"   - Total examples: {len(updated_rows)}")
            logger.info(f"   - Valid audio files: {len(audio_files)}")
            logger.info(f"   - Total audio size: {total_audio_size:,} bytes")
            logger.info(f"   - Missing audio files: {len(missing_files)}")
            logger.info(f"   - Invalid JSON lines: {len(invalid_json_lines)}")

            if missing_files:
                logger.warning("⚠️ Missing audio files:")
                for missing in missing_files[:5]:  # Show first 5
                    logger.warning(f"   - {missing}")
                if len(missing_files) > 5:
                    logger.warning(f"   ... and {len(missing_files) - 5} more")

            if invalid_json_lines:
                logger.warning("⚠️ Invalid JSON lines:")
                for invalid in invalid_json_lines[:3]:  # Show first 3
                    logger.warning(f"   - {invalid}")
                if len(invalid_json_lines) > 3:
                    logger.warning(f"   ... and {len(invalid_json_lines) - 3} more")

            # Show sample of how paths will be converted
            if audio_files:
                logger.info("πŸ”„ Path conversion preview:")
                for audio_file in audio_files[:3]:  # Show first 3
                    logger.info(f"   - {str(audio_file)} β†’ audio/{audio_file.name}")

            # Overall validation status
            if len(updated_rows) == 0:
                logger.error("❌ No valid examples found in dataset")
                return False

            if len(missing_files) > 0:
                logger.warning("⚠️ Some audio files are missing - they will be skipped during upload")
            else:
                logger.info("βœ… All audio files found and valid")

            logger.info("βœ… Dataset validation completed successfully!")
            return True

        except Exception as e:
            logger.error(f"❌ Failed to validate dataset: {e}")
            return False

    def _load_training_config(self) -> Dict[str, Any]:
        """Load training configuration"""
        config_path = self.model_path / "training_config.json"
        if config_path.exists():
            with open(config_path, "r") as f:
                return json.load(f)
        return {"model_name": "HuggingFaceTB/SmolLM3-3B"}
    
    def _load_training_results(self) -> Dict[str, Any]:
        """Load training results"""
        results_path = self.model_path / "train_results.json"
        if results_path.exists():
            with open(results_path, "r") as f:
                return json.load(f)
        return {"final_loss": "Unknown", "total_steps": "Unknown"}

def parse_args():
    """Parse command line arguments"""
    parser = argparse.ArgumentParser(description='Push trained model to Hugging Face Hub')
    
    # Subcommands
    subparsers = parser.add_subparsers(dest='command', help='Available commands')

    # Model push subcommand
    model_parser = subparsers.add_parser('model', help='Push trained model to Hugging Face Hub')
    model_parser.add_argument('model_path', type=str, help='Path to trained model directory')
    model_parser.add_argument('repo_name', type=str, help='Hugging Face repository name (repo-name). Username will be auto-detected from your token.')
    model_parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
    model_parser.add_argument('--private', action='store_true', help='Make repository private')
    model_parser.add_argument('--author-name', type=str, default=None, help='Author name for model card')
    model_parser.add_argument('--model-description', type=str, default=None, help='Model description for model card')
    model_parser.add_argument('--model-name', type=str, default=None, help='Base model name')
    model_parser.add_argument('--dataset-name', type=str, default=None, help='Dataset name')

    # Dataset push subcommand
    dataset_parser = subparsers.add_parser('dataset', help='Push dataset to Hugging Face Hub')
    dataset_parser.add_argument('dataset_path', type=str, help='Path to dataset JSONL file')
    dataset_parser.add_argument('repo_name', type=str, help='Hugging Face dataset repository name')
    dataset_parser.add_argument('--token', type=str, default=None, help='Hugging Face token')
    dataset_parser.add_argument('--private', action='store_true', help='Make repository private')
    dataset_parser.add_argument('--test', action='store_true', help='Test mode - validate dataset without uploading')
    
    return parser.parse_args()

def main():
    """Main function"""
    args = parse_args()

    # Setup logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )

    if not args.command:
        logger.error("❌ No command specified. Use 'model' or 'dataset' subcommand.")
        return 1

    try:
        if args.command == 'model':
            logger.info("Starting model push to Hugging Face Hub")

            # Initialize pusher
            pusher = HuggingFacePusher(
                model_path=args.model_path,
                repo_name=args.repo_name,
                token=args.token,
                private=args.private,
                author_name=args.author_name,
                model_description=args.model_description,
                model_name=args.model_name,
                dataset_name=args.dataset_name
            )

            # Push model
            success = pusher.push_model()

            if success:
                logger.info("βœ… Model push completed successfully!")
                logger.info(f"🌐 View your model at: https://huggingface.co/{args.repo_name}")
            else:
                logger.error("❌ Model push failed!")
                return 1

        elif args.command == 'dataset':
            logger.info("Starting dataset push to Hugging Face Hub")

            # Initialize pusher for dataset
            pusher = HuggingFacePusher(
                model_path="",  # Not needed for dataset push
                repo_name=args.repo_name,
                token=args.token,
                private=args.private
            )

            if getattr(args, 'test', False):
                # Test mode - validate dataset without uploading
                success = pusher.test_dataset_push(args.dataset_path)
                if success:
                    logger.info("βœ… Dataset validation completed successfully!")
                else:
                    logger.error("❌ Dataset validation failed!")
                    return 1
            else:
                # Push dataset
                success = pusher.push_dataset(args.dataset_path, args.repo_name)

                if success:
                    logger.info("βœ… Dataset push completed successfully!")
                    logger.info(f"πŸ“Š View your dataset at: https://huggingface.co/datasets/{args.repo_name}")
                else:
                    logger.error("❌ Dataset push failed!")
                    return 1

    except Exception as e:
        logger.error(f"❌ Error during push: {e}")
        return 1

    return 0

if __name__ == "__main__":
    exit(main())