Spaces:
Running
Running
File size: 17,392 Bytes
643a0c1 676b3f3 643a0c1 be9aa9f 676b3f3 643a0c1 be9aa9f 643a0c1 676b3f3 643a0c1 be9aa9f 643a0c1 be9aa9f 676b3f3 be9aa9f 643a0c1 be9aa9f 676b3f3 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 676b3f3 be9aa9f 643a0c1 676b3f3 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 be9aa9f 643a0c1 676b3f3 be9aa9f 643a0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
#!/usr/bin/env python3
"""
Voxtral ASR LoRA Fine-tuning Script with Trackio Integration
This script fine-tunes Voxtral models using LoRA for ASR tasks with automatic experiment tracking
via Trackio and Hugging Face Spaces.
Features:
- Automatic username detection from HF_TOKEN environment variable
- Auto-generated space names with timestamps
- Local-only mode when no HF_TOKEN is set
- Comprehensive experiment logging
- LoRA-specific hyperparameters tracking
- Optional dataset pushing to Hugging Face Hub
Authentication:
Set HF_TOKEN environment variable to enable automatic space creation:
Linux/Mac: export HF_TOKEN=your_token_here
Windows: set HF_TOKEN=your_token_here
Or: export HUGGINGFACE_HUB_TOKEN=your_token_here
Get your token from: https://huggingface.co/settings/tokens
"""
import argparse
import json
from pathlib import Path
from datetime import datetime
from typing import Tuple, Optional
import torch
from datasets import load_dataset, Audio, Dataset
from transformers import (
VoxtralForConditionalGeneration,
VoxtralProcessor,
Trainer,
TrainingArguments,
)
from peft import LoraConfig, get_peft_model
from huggingface_hub import HfApi
import trackio
def validate_hf_token(token: str) -> Tuple[bool, Optional[str], Optional[str]]:
"""
Validate a Hugging Face token and return the username.
Args:
token (str): The Hugging Face token to validate
Returns:
Tuple[bool, Optional[str], Optional[str]]:
- success: True if token is valid, False otherwise
- username: The username associated with the token (if valid)
- error_message: Error message if validation failed
"""
try:
# Create API client with token directly
api = HfApi(token=token)
# Try to get user info - this will fail if token is invalid
user_info = api.whoami()
# Extract username from user info
username = user_info.get("name", user_info.get("username"))
if not username:
return False, None, "Could not retrieve username from token"
return True, username, None
except Exception as e:
error_msg = str(e)
if "401" in error_msg or "unauthorized" in error_msg.lower():
return False, None, "Invalid token - unauthorized access"
elif "403" in error_msg:
return False, None, "Token lacks required permissions"
elif "network" in error_msg.lower() or "connection" in error_msg.lower():
return False, None, f"Network error: {error_msg}"
else:
return False, None, f"Validation error: {error_msg}"
def get_default_space_name(project_type: str = "voxtral-lora-finetuning") -> str:
"""
Generate a default space name with username and timestamp.
Args:
project_type: Type of project (e.g., "voxtral-asr-finetuning", "voxtral-lora-finetuning")
Returns:
str: Default space name in format "username/project-type-timestamp"
"""
try:
# Get token from environment variables only
import os
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
if not token:
print("Warning: No HF_TOKEN or HUGGINGFACE_HUB_TOKEN environment variable found.")
print("Set HF_TOKEN environment variable to enable automatic space creation.")
print("Example: export HF_TOKEN=your_token_here")
print("Falling back to local-only mode.")
return None
# Validate token and get username
success, username, error = validate_hf_token(token)
if success and username:
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
return f"{username}/{project_type}-{timestamp}"
else:
print(f"Warning: Token validation failed: {error}")
print("Falling back to local-only mode.")
return None
except Exception as e:
print(f"Warning: Failed to generate default space name: {e}")
return None
class VoxtralDataCollator:
"""Data collator for Voxtral STT training - processes audio and text."""
def __init__(self, processor, model_id):
self.processor = processor
self.model_id = model_id
self.pad_id = processor.tokenizer.pad_token_id
def __call__(self, features):
"""
Each feature should have:
- "audio": raw audio (whatever your processor expects)
- "text": transcription string
"""
texts = [f["text"] for f in features]
audios = [f["audio"]["array"] for f in features]
# 1) Build the PROMPT part: [AUDIO]β¦[AUDIO] <transcribe>
prompt = self.processor.apply_transcription_request( # (same method you used)
language="en",
model_id=self.model_id if hasattr(self, "model_id") else None,
audio=audios,
format=["WAV"] * len(audios),
return_tensors="pt",
)
# prompt["input_ids"]: shape [B, L_prompt]
# keep any extra fields (e.g., audio features) to pass through to the model
passthrough = {k: v for k, v in prompt.items()
if k not in ("input_ids", "attention_mask")}
prompt_ids = prompt["input_ids"] # [B, Lp]
prompt_attn = prompt["attention_mask"] # [B, Lp]
B = prompt_ids.size(0)
tok = self.processor.tokenizer
# 2) Tokenize transcriptions WITHOUT padding; we'll pad after concatenation
text_tok = tok(
texts,
add_special_tokens=False,
padding=False,
truncation=True,
max_length=256,
return_tensors=None,
)
text_ids_list = text_tok["input_ids"]
# 3) Concatenate: input_ids = [PROMPT] + [TEXT]
input_ids, attention_mask, labels = [], [], []
for i in range(B):
p_ids = prompt_ids[i].tolist()
p_att = prompt_attn[i].tolist()
t_ids = text_ids_list[i]
ids = p_ids + t_ids
attn = p_att + [1] * len(t_ids)
# labels: mask prompt tokens, learn only on text tokens
lab = [-100] * len(p_ids) + t_ids
input_ids.append(ids)
attention_mask.append(attn)
labels.append(lab)
# 4) Pad to max length in batch
pad_id = tok.pad_token_id if tok.pad_token_id is not None else tok.eos_token_id
max_len = max(len(x) for x in input_ids)
def pad_to(seq, fill, L):
return seq + [fill] * (L - len(seq))
input_ids = [pad_to(x, pad_id, max_len) for x in input_ids]
attention_mask = [pad_to(x, 0, max_len) for x in attention_mask]
labels = [pad_to(x, -100, max_len) for x in labels]
batch = {
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"attention_mask": torch.tensor(attention_mask, dtype=torch.long),
"labels": torch.tensor(labels, dtype=torch.long),
}
# 5) Include processor outputs needed by the model (e.g., audio features)
for k, v in passthrough.items():
batch[k] = v
return batch
def _load_jsonl_dataset(jsonl_path: str) -> Dataset:
"""Load local JSONL with fields {audio_path, text} into a Dataset with audio column."""
records = []
jsonl_file = Path(jsonl_path)
if not jsonl_file.exists():
raise FileNotFoundError(f"Dataset jsonl not found: {jsonl_path}")
with open(jsonl_file, "r", encoding="utf-8") as f:
for line in f:
if not line.strip():
continue
obj = json.loads(line)
audio_path = obj.get("audio_path") or obj.get("audio")
text = obj.get("text")
if not audio_path or text is None:
continue
records.append({"audio": audio_path, "text": text})
if not records:
raise ValueError("No valid records found in JSONL. Expect keys: audio_path, text")
ds = Dataset.from_list(records)
# Cast the audio column from file paths and resample to 16kHz
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
return ds
def load_and_prepare_dataset(dataset_jsonl: str | None, dataset_name: str | None, dataset_config: str | None,
train_count: int, eval_count: int):
"""Load and prepare dataset for training (JSONL or HF hub)."""
if dataset_jsonl:
print(f"Loading local JSONL dataset: {dataset_jsonl}")
ds = _load_jsonl_dataset(dataset_jsonl)
else:
ds_name = dataset_name or "hf-audio/esb-datasets-test-only-sorted"
ds_cfg = dataset_config or "voxpopuli"
print(f"Loading dataset: {ds_name}/{ds_cfg}")
ds = load_dataset(ds_name, ds_cfg, split="test")
ds = ds.cast_column("audio", Audio(sampling_rate=16000))
total = len(ds)
train_end = min(train_count, total)
eval_end = min(train_end + eval_count, total)
train_dataset = ds.select(range(train_end))
eval_dataset = ds.select(range(train_end, eval_end)) if eval_end > train_end else None
return train_dataset, eval_dataset
def main():
parser = argparse.ArgumentParser(description="LoRA fine-tune Voxtral for ASR")
parser.add_argument("--dataset-jsonl", type=str, default=None, help="Path to local JSONL with {audio_path, text}")
parser.add_argument("--dataset-name", type=str, default=None, help="HF dataset repo (if not using JSONL)")
parser.add_argument("--dataset-config", type=str, default=None, help="HF dataset config/subset")
parser.add_argument("--train-count", type=int, default=100, help="Number of training samples to use")
parser.add_argument("--eval-count", type=int, default=50, help="Number of eval samples to use")
parser.add_argument("--model-checkpoint", type=str, default="mistralai/Voxtral-Mini-3B-2507")
parser.add_argument("--output-dir", type=str, default="./voxtral-finetuned")
parser.add_argument("--batch-size", type=int, default=2)
parser.add_argument("--eval-batch-size", type=int, default=4)
parser.add_argument("--grad-accum", type=int, default=4)
parser.add_argument("--learning-rate", type=float, default=5e-5)
parser.add_argument("--epochs", type=float, default=3)
parser.add_argument("--logging-steps", type=int, default=10)
parser.add_argument("--save-steps", type=int, default=50)
parser.add_argument("--lora-r", type=int, default=8)
parser.add_argument("--lora-alpha", type=int, default=32)
parser.add_argument("--lora-dropout", type=float, default=0.0)
parser.add_argument("--freeze-audio-tower", action="store_true", help="Freeze audio encoder parameters")
parser.add_argument("--trackio-space", type=str, default=None,
help="Hugging Face Space ID for trackio logging (format: username/space-name). If not provided, will auto-generate based on HF token")
parser.add_argument("--push-dataset", action="store_true",
help="Push the training dataset to Hugging Face Hub after training")
parser.add_argument("--dataset-repo", type=str, default=None,
help="Dataset repository name for pushing dataset (format: username/dataset-name)")
args = parser.parse_args()
model_checkpoint = args.model_checkpoint
output_dir = args.output_dir
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {torch_device}")
# Determine trackio space
trackio_space = args.trackio_space
if not trackio_space:
trackio_space = get_default_space_name("voxtral-lora-finetuning")
# Initialize trackio for experiment tracking
if trackio_space:
print(f"Initializing trackio with space: {trackio_space}")
trackio.init(
project="voxtral-lora-finetuning",
config={
"model_checkpoint": model_checkpoint,
"output_dir": output_dir,
"batch_size": args.batch_size,
"learning_rate": args.learning_rate,
"epochs": args.epochs,
"train_count": args.train_count,
"eval_count": args.eval_count,
"dataset_jsonl": args.dataset_jsonl,
"dataset_name": args.dataset_name,
"dataset_config": args.dataset_config,
"lora_r": args.lora_r,
"lora_alpha": args.lora_alpha,
"lora_dropout": args.lora_dropout,
"freeze_audio_tower": args.freeze_audio_tower,
},
space_id=trackio_space
)
else:
print("Initializing trackio in local-only mode")
trackio.init(
project="voxtral-lora-finetuning",
config={
"model_checkpoint": model_checkpoint,
"output_dir": output_dir,
"batch_size": args.batch_size,
"learning_rate": args.learning_rate,
"epochs": args.epochs,
"train_count": args.train_count,
"eval_count": args.eval_count,
"dataset_jsonl": args.dataset_jsonl,
"dataset_name": args.dataset_name,
"dataset_config": args.dataset_config,
"lora_r": args.lora_r,
"lora_alpha": args.lora_alpha,
"lora_dropout": args.lora_dropout,
"freeze_audio_tower": args.freeze_audio_tower,
}
)
print("Loading processor and model...")
processor = VoxtralProcessor.from_pretrained(model_checkpoint)
lora_cfg = LoraConfig(
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
task_type="SEQ_2_SEQ_LM",
)
model = VoxtralForConditionalGeneration.from_pretrained(
model_checkpoint,
torch_dtype=torch.bfloat16,
device_map="auto"
)
if args.freeze_audio_tower:
for param in model.audio_tower.parameters():
param.requires_grad = False
model = get_peft_model(model, lora_cfg)
model.print_trainable_parameters()
train_dataset, eval_dataset = load_and_prepare_dataset(
dataset_jsonl=args.dataset_jsonl,
dataset_name=args.dataset_name,
dataset_config=args.dataset_config,
train_count=args.train_count,
eval_count=args.eval_count,
)
data_collator = VoxtralDataCollator(processor, model_checkpoint)
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.grad_accum,
learning_rate=args.learning_rate,
num_train_epochs=args.epochs,
bf16=True,
logging_steps=args.logging_steps,
eval_steps=args.save_steps if eval_dataset else None,
save_steps=args.save_steps,
eval_strategy="steps" if eval_dataset else "no",
save_strategy="steps",
report_to=["trackio"],
remove_unused_columns=False,
dataloader_num_workers=1,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator,
)
print("Starting training...")
trainer.train()
print(f"Saving model to {output_dir}")
trainer.save_model()
processor.save_pretrained(output_dir)
if eval_dataset:
results = trainer.evaluate()
print(f"Final evaluation results: {results}")
# Log final evaluation results
trackio.log(results)
# Push dataset to Hub if requested
if args.push_dataset and args.dataset_jsonl:
print("Pushing dataset to Hugging Face Hub...")
try:
from pathlib import Path
import subprocess
dataset_repo = args.dataset_repo
if not dataset_repo:
# Auto-generate dataset repo name
if trackio_space:
username = trackio_space.split('/')[0]
timestamp = datetime.now().strftime("%Y%m%d-%H%M%S")
dataset_repo = f"{username}/voxtral-dataset-{timestamp}"
else:
print("Warning: Cannot auto-generate dataset repo name without HF token")
dataset_repo = f"voxtral-dataset-{datetime.now().strftime('%Y%m%d-%H%M%S')}"
# Call the push script
push_cmd = [
"python", str(Path(__file__).parent / "push_to_huggingface.py"),
"dataset", args.dataset_jsonl, dataset_repo
]
result = subprocess.run(push_cmd, capture_output=True, text=True)
if result.returncode == 0:
print(f"β
Dataset pushed to: https://huggingface.co/datasets/{dataset_repo}")
else:
print(f"β Failed to push dataset: {result.stderr}")
except Exception as e:
print(f"β Error pushing dataset: {e}")
# Finish trackio logging
trackio.finish()
print("Training completed successfully!")
if __name__ == "__main__":
main() |