File size: 8,217 Bytes
be9aa9f
 
 
 
 
 
 
a595d5a
be9aa9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
---
language:
- en
- fr
license: apache-2.0
library_name: transformers
tags:
- voxtral
- fine-tuned
- text-generation
- tonic
{{#if quantized_models}}- quantized{{/if}}
pipeline_tag: text-generation
base_model: {{base_model}}
{{#if dataset_name}}
datasets:
- {{dataset_name}}
{{/if}}
{{#if quantized_models}}
model-index:
- name: {{model_name}}
  results:
  - task:
      type: text-generation
    dataset:
      name: {{dataset_name}}
      type: {{dataset_name}}
    metrics:
    - name: Training Loss
      type: loss
      value: "{{training_loss|default:'N/A'}}"
    - name: Validation Loss
      type: loss
      value: "{{validation_loss|default:'N/A'}}"
    - name: Perplexity
      type: perplexity
      value: "{{perplexity|default:'N/A'}}"
- name: {{model_name}} (int8 quantized)
  results:
  - task:
      type: text-generation
    dataset:
      name: {{dataset_name}}
      type: {{dataset_name}}
    metrics:
    - name: Memory Reduction
      type: memory_efficiency
      value: "~50%"
    - name: Inference Speed
      type: speed
      value: "Faster"
- name: {{model_name}} (int4 quantized)
  results:
  - task:
      type: text-generation
    dataset:
      name: {{dataset_name}}
      type: {{dataset_name}}
    metrics:
    - name: Memory Reduction
      type: memory_efficiency
      value: "~75%"
    - name: Inference Speed
      type: speed
      value: "Significantly Faster"
{{else}}
model-index:
- name: {{model_name}}
  results:
  - task:
      type: text-generation
    dataset:
      name: {{dataset_name}}
      type: {{dataset_name}}
    metrics:
    - name: Training Loss
      type: loss
      value: "{{training_loss|default:'N/A'}}"
    - name: Validation Loss
      type: loss
      value: "{{validation_loss|default:'N/A'}}"
    - name: Perplexity
      type: perplexity
      value: "{{perplexity|default:'N/A'}}"
{{/if}}
{{#if author_name}}
author: {{author_name}}
{{/if}}
{{#if experiment_name}}
experiment_name: {{experiment_name}}
{{/if}}
{{#if trackio_url}}
trackio_url: {{trackio_url}}
{{/if}}
{{#if dataset_repo}}
dataset_repo: {{dataset_repo}}
{{/if}}
{{#if hardware_info}}
hardware: "{{hardware_info}}"
{{/if}}
{{#if training_config_type}}
training_config: {{training_config_type}}
{{/if}}
{{#if trainer_type}}
trainer_type: {{trainer_type}}
{{/if}}
{{#if batch_size}}
batch_size: {{batch_size}}
{{/if}}
{{#if learning_rate}}
learning_rate: {{learning_rate}}
{{/if}}
{{#if max_epochs}}
max_epochs: {{max_epochs}}
{{/if}}
{{#if max_seq_length}}
max_seq_length: {{max_seq_length}}
{{/if}}
{{#if dataset_sample_size}}
dataset_sample_size: {{dataset_sample_size}}
{{/if}}
{{#if dataset_size}}
dataset_size: {{dataset_size}}
{{/if}}
{{#if dataset_format}}
dataset_format: {{dataset_format}}
{{/if}}
{{#if gradient_accumulation_steps}}
gradient_accumulation_steps: {{gradient_accumulation_steps}}
{{/if}}
---

# {{model_name}}

{{model_description}}

## Model Details

- **Base Model**: SmolLM3-3B
- **Model Type**: Causal Language Model
- **Languages**: English, French
- **License**: Apache 2.0
- **Fine-tuned**: Yes
{{#if quantized_models}}
- **Quantized Versions**: Available in subdirectories
{{/if}}

## Usage

### Main Model

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the main model
model = AutoModelForCausalLM.from_pretrained(
    "{{repo_name}}",
    device_map="auto",
    torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained("{{repo_name}}")

# Generate text
input_text = "What are we having for dinner?"
input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type)
output = model.generate(**input_ids, max_new_tokens=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## Training Information

### Training Configuration
- **Base Model**: {{base_model}}
- **Dataset**: {{dataset_name}}
- **Training Config**: {{training_config_type}}
- **Trainer Type**: {{trainer_type}}
{{#if dataset_sample_size}}
- **Dataset Sample Size**: {{dataset_sample_size}}
{{/if}}

### Training Parameters
- **Batch Size**: {{batch_size}}
- **Gradient Accumulation**: {{gradient_accumulation_steps}}
- **Learning Rate**: {{learning_rate}}
- **Max Epochs**: {{max_epochs}}
- **Sequence Length**: {{max_seq_length}}

### Training Infrastructure
- **Hardware**: {{hardware_info}}
- **Monitoring**: Trackio integration
- **Experiment**: {{experiment_name}}

## Model Architecture

This is a fine-tuned version of the SmolLM3-3B model with the following specifications:

- **Base Model**: SmolLM3-3B
- **Parameters**: ~3B
- **Context Length**: {{max_seq_length}}
- **Languages**: English, French
- **Architecture**: Transformer-based causal language model

## Performance

The model provides:
- **Text Generation**: High-quality text generation capabilities
- **Conversation**: Natural conversation abilities
- **Multilingual**: Support for English and French
{{#if quantized_models}}
- **Quantized Versions**: Optimized for different deployment scenarios
{{/if}}

## Limitations

1. **Context Length**: Limited by the model's maximum sequence length
2. **Bias**: May inherit biases from the training data
3. **Factual Accuracy**: May generate incorrect or outdated information
4. **Safety**: Should be used responsibly with appropriate safeguards
{{#if quantized_models}}
5. **Quantization**: Quantized versions may have slightly reduced accuracy
{{/if}}

## Training Data

The model was fine-tuned on:
- **Dataset**: {{dataset_name}}
- **Size**: {{dataset_size}}
- **Format**: {{dataset_format}}
- **Languages**: English, French

## Evaluation

The model was evaluated using:
- **Metrics**: Loss, perplexity, and qualitative assessment
- **Monitoring**: Real-time tracking via Trackio
- **Validation**: Regular validation during training

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{{{model_name_slug}},
  title={{{{model_name}}}},
  author={{{author_name}}},
  year={2024},
  url={https://huggingface.co/{{repo_name}}}
}
```

## License

This model is licensed under the Apache 2.0 License.

## Acknowledgments

- **Base Model**: SmolLM3-3B by HuggingFaceTB
- **Training Framework**: PyTorch, Transformers, PEFT
- **Monitoring**: Trackio integration
- **Quantization**: torchao library

## Support

For questions and support:
- Open an issue on the Hugging Face repository
- Check the model documentation
- Review the training logs and configuration

## Repository Structure

```
{{repo_name}}/
β”œβ”€β”€ README.md (this file)
β”œβ”€β”€ config.json
β”œβ”€β”€ pytorch_model.bin
β”œβ”€β”€ tokenizer.json
└── tokenizer_config.json
```

## Usage Examples

### Text Generation
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("{{repo_name}}")
tokenizer = AutoTokenizer.from_pretrained("{{repo_name}}")

text = "The future of artificial intelligence is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

### Conversation
```python
def chat_with_model(prompt, max_length=100):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=max_length)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

response = chat_with_model("Hello, how are you today?")
print(response)
```

### Advanced Usage
```python
# With generation parameters
outputs = model.generate(
    **inputs,
    max_new_tokens=100,
    temperature=0.7,
    top_p=0.9,
    do_sample=True,
    pad_token_id=tokenizer.eos_token_id
)
```

## Monitoring and Tracking

This model was trained with comprehensive monitoring:
- **Trackio Space**: {{trackio_url}}
- **Experiment**: {{experiment_name}}
- **Dataset Repository**: https://huggingface.co/datasets/{{dataset_repo}}
- **Training Logs**: Available in the experiment data

## Deployment

### Requirements
```bash
pip install torch transformers accelerate
{{#if quantized_models}}
pip install torchao  # For quantized models
{{/if}}
```

### Hardware Requirements
- **Main Model**: GPU with 8GB+ VRAM recommended

## Changelog

- **v1.0.0**: Initial release with fine-tuned model