---
title: VoxFactory
emoji: 🌬️
colorFrom: gray
colorTo: red
sdk: gradio
app_file: interface.py
pinned: false
license: mit
short_description: FinetuneASR Voxtral
---
# Finetune Voxtral for ASR with Transformers 🤗
This repository fine-tunes the [Voxtral](https://huggingface.co/Deep-unlearning/Voxtral) speech model on conversational speech datasets using the Hugging Face `transformers` and `datasets` libraries.
## Installation
### Step 1: Clone the repository
```bash
git clone https://github.com/Deep-unlearning/Finetune-Voxtral-ASR.git
cd Finetune-Voxtral-ASR
```
### Step 2: Set up environment
Choose your preferred package manager:
📦 Using UV (recommended)
[Install `uv`](https://docs.astral.sh/uv/getting-started/installation/)
```bash
uv venv .venv --python 3.10 && source .venv/bin/activate
uv pip install -r requirements.txt
```
🐍 Using pip
```bash
python -m venv .venv --python 3.10 && source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
```
## Dataset Preparation
Perfect — here’s a **drop-in replacement** for your README’s “Dataset Preparation” that matches your script (uses **`hf-audio/esb-datasets-test-only-sorted`** with the **`voxpopuli`** config, 16 kHz casting, and a small train/eval slice), and explains the Voxtral/LLaMA-style prompt+label masking your collator implements.
---
## Dataset Preparation
For ASR fine-tuning, inputs look like:
* **Inputs**: `[AUDIO] … [AUDIO] `
* **Labels**: same sequence, but the prefix `[AUDIO] … [AUDIO] ` is **masked with `-100`** so loss is computed **only** on the transcription tokens.
The `VoxtralDataCollator` already builds this sequence (prompt expansion via the processor and label masking).
The dataset only needs two fields:
```python
{
"audio": {"array": , "sampling_rate": 16000, ...},
"text": ""
}
```
If you want to swap to a different dataset, ensure after loading you still have:
* an **`audio`** column (cast to `Audio(sampling_rate=16000)`), and
* a **`text`** column (the reference transcription).
If your dataset uses different column names, map them to `audio` and `text` before returning.
## Training
Run the training script:
```bash
uv run train.py
```
Logs and checkpoints will be saved under the `outputs/` directory by default.
## Training with LoRA
You can also run the training script with LoRA:
```bash
uv run train_lora.py
```
**Happy fine-tuning Voxtral!** 🚀