Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,812 Bytes
ba3e817 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import torch
from threading import Thread
import gradio as gr
import spaces
import re
from peft import PeftModel
# Load the base model
try:
base_model = AutoModelForCausalLM.from_pretrained(
"openai/gpt-oss-20b",
torch_dtype="auto",
device_map="auto",
attn_implementation="kernels-community/vllm-flash-attention3"
)
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
# Load the LoRA adapter
try:
model = PeftModel.from_pretrained(base_model, "Tonic/gpt-oss-20b-multilingual-reasoner")
print("✅ LoRA model loaded successfully!")
except Exception as lora_error:
print(f"⚠️ LoRA adapter failed to load: {lora_error}")
print("🔄 Falling back to base model...")
model = base_model
except Exception as e:
print(f"❌ Error loading model: {e}")
raise e
def format_conversation_history(chat_history):
messages = []
for item in chat_history:
role = item["role"]
content = item["content"]
if isinstance(content, list):
content = content[0]["text"] if content and "text" in content[0] else str(content)
messages.append({"role": role, "content": content})
return messages
def create_harmony_prompt(messages, reasoning_level="medium"):
"""
Create a proper Harmony format prompt for GPT-OSS-20B
Based on the Harmony format from https://github.com/openai/harmony
"""
# Start with system message in Harmony format
system_content = f"""You are ChatGPT, a large language model trained by OpenAI.
Knowledge cutoff: 2024-06
Current date: 2025-01-28
Reasoning: {reasoning_level}
# Valid channels: analysis, commentary, final. Channel must be included for every message."""
# Build the prompt in Harmony format
prompt_parts = []
# Add system message
prompt_parts.append(f"<|start|>system<|message|>{system_content}<|end|>")
# Add conversation messages
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
# Skip system messages as we already added the main one
continue
elif role == "user":
prompt_parts.append(f"<|start|>user<|message|>{content}<|end|>")
elif role == "assistant":
prompt_parts.append(f"<|start|>assistant<|message|>{content}<|end|>")
# Add the generation prompt
prompt_parts.append("<|start|>assistant")
return "\n".join(prompt_parts)
@spaces.GPU(duration=60)
def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty):
new_message = {"role": "user", "content": input_data}
system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []
processed_history = format_conversation_history(chat_history)
messages = system_message + processed_history + [new_message]
# Extract reasoning level from system prompt
reasoning_level = "medium"
if "reasoning:" in system_prompt.lower():
if "high" in system_prompt.lower():
reasoning_level = "high"
elif "low" in system_prompt.lower():
reasoning_level = "low"
# Create Harmony format prompt
prompt = create_harmony_prompt(messages, reasoning_level)
# Create streamer for proper streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Prepare generation kwargs
generation_kwargs = {
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
"use_cache": True
}
# Tokenize input using the Harmony format
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# Start generation in a separate thread
thread = Thread(target=model.generate, kwargs={**inputs, **generation_kwargs})
thread.start()
# Stream the response and parse Harmony format
current_channel = None
current_content = ""
thinking = ""
final = ""
for chunk in streamer:
current_content += chunk
# Parse Harmony format channels
# Look for channel markers like <|channel|>analysis, <|channel|>commentary, <|channel|>final
if "<|channel|>" in current_content:
# Extract channel and content
parts = current_content.split("<|channel|>")
if len(parts) >= 2:
channel_part = parts[1]
if channel_part.startswith("analysis"):
current_channel = "analysis"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:] # length of "<|message|>"
thinking += content
elif channel_part.startswith("commentary"):
current_channel = "commentary"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:]
thinking += content
elif channel_part.startswith("final"):
current_channel = "final"
content_start = channel_part.find("<|message|>")
if content_start != -1:
content = channel_part[content_start + 10:]
final += content
# Clean up the content for display
clean_thinking = re.sub(r'^analysis\s*', '', thinking).strip()
clean_final = final.strip()
# Format for display
if clean_thinking or clean_final:
formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}"
yield formatted
demo = gr.ChatInterface(
fn=generate_response,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048),
gr.Textbox(
label="System Prompt",
value="You are a helpful assistant. Reasoning: medium",
lines=4,
placeholder="Change system prompt"
),
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50),
gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0)
],
examples=[
[{"text": "Explain Newton laws clearly and concisely"}],
[{"text": "Write a Python function to calculate the Fibonacci sequence"}],
[{"text": "What are the benefits of open weight AI models"}],
],
cache_examples=False,
type="messages",
description="""
# 🙋🏻♂️Welcome to 🌟Tonic's gpt-oss-20b Multilingual Reasoner Demo !
Wait couple of seconds initially. You can adjust reasoning level in the system prompt like "Reasoning: high.
This version uses the proper Harmony format for better generation quality.
""",
fill_height=True,
textbox=gr.Textbox(
label="Query Input",
placeholder="Type your prompt"
),
stop_btn="Stop Generation",
multimodal=False,
theme=gr.themes.Soft()
)
if __name__ == "__main__":
demo.launch(share=True) |