File size: 10,237 Bytes
d5b2cea
 
 
 
 
 
 
 
23d4aef
d5b2cea
 
 
 
 
23d4aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
---
title: L Operator Demo
emoji: πŸ“Š
colorFrom: purple
colorTo: green
sdk: gradio
sdk_version: 5.44.0
app_file: app.py
pinned: true
license: gpl
short_description: demo of l-operator with no commands
---

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

# πŸ€– L-Operator: Android Device Control Demo

A complete multimodal Gradio demo for the [L-Operator model](https://huggingface.co/Tonic/l-android-control), a fine-tuned multimodal AI agent based on LiquidAI's LFM2-VL-1.6B model, optimized for Android device control through visual understanding and action generation.

## 🌟 Features

- **Multimodal Interface**: Upload Android screenshots and provide text instructions
- **Chat Interface**: Interactive chat with the model using Gradio's ChatInterface component
- **Action Generation**: Generate JSON actions for Android device control
- **Example Episodes**: Pre-loaded examples from extracted training episodes
- **Real-time Processing**: Optimized for real-time inference
- **Beautiful UI**: Modern, responsive interface with comprehensive documentation
- **⚑ ZeroGPU Compatible**: Dynamic GPU allocation for cost-effective deployment

## πŸ“‹ Model Details

| Property | Value |
|----------|-------|
| **Base Model** | [LiquidAI/LFM2-VL-1.6B](https://huggingface.co/LiquidAI/LFM2-VL-1.6B) |
| **Architecture** | LFM2-VL (1.6B parameters) |
| **Fine-tuning** | LoRA (Low-Rank Adaptation) |
| **Training Data** | Android control episodes with screenshots and actions |
| **License** | Proprietary (Investment Access Required) |

## πŸš€ Quick Start

### Prerequisites

1. **Python 3.8+**: Ensure you have Python 3.8 or higher installed
2. **Hugging Face Access**: Request access to the [L-Operator model](https://huggingface.co/Tonic/l-android-control)
3. **Authentication**: Login to Hugging Face using `huggingface-cli login`

### Installation

1. **Clone the repository**:
   ```bash
   git clone <repository-url>
   cd l-operator-demo
   ```

2. **Install dependencies**:
   ```bash
   pip install -r requirements.txt
   ```

3. **Authenticate with Hugging Face**:
   ```bash
   huggingface-cli login
   ```

### Running the Demo

1. **Start the demo**:
   ```bash
   python app.py
   ```

2. **Open your browser** and navigate to `http://localhost:7860`

3. **Load the model** by clicking the "πŸš€ Load L-Operator Model" button

4. **Upload an Android screenshot** and provide instructions

5. **Generate actions** or use the chat interface

## ⚑ ZeroGPU Deployment

This demo is optimized for [Hugging Face Spaces ZeroGPU](https://huggingface.co/docs/hub/spaces-zerogpu), providing dynamic GPU allocation for cost-effective deployment.

### ZeroGPU Features

- **πŸ†“ Free GPU Access**: Dynamic NVIDIA H200 GPU allocation
- **⚑ On-Demand Resources**: GPUs allocated only when needed
- **πŸ’° Cost Efficient**: Optimized resource utilization
- **πŸ”„ Multi-GPU Support**: Leverage multiple GPUs concurrently
- **πŸ›‘οΈ Automatic Management**: Resources released after function completion

### ZeroGPU Specifications

| Specification | Value |
|---------------|-------|
| **GPU Type** | NVIDIA H200 slice |
| **Available VRAM** | 70GB per workload |
| **Supported Gradio** | 4+ |
| **Supported PyTorch** | 2.1.2, 2.2.2, 2.4.0, 2.5.1 |
| **Supported Python** | 3.10.13 |
| **Function Duration** | Up to 120 seconds per request |

### Deploying to Hugging Face Spaces

1. **Create a new Space** on Hugging Face:
   - Choose **Gradio SDK**
   - Select **ZeroGPU** in hardware options
   - Upload your code

2. **Space Configuration**:
   ```yaml
   # app.py is automatically detected
   # requirements.txt is automatically installed
   # ZeroGPU is automatically configured
   ```

3. **Access Requirements**:
   - **Personal accounts**: PRO subscription required
   - **Organizations**: Enterprise Hub subscription required
   - **Usage limits**: 10 Spaces (personal) / 50 Spaces (organization)

### ZeroGPU Integration Details

The demo automatically detects ZeroGPU availability and optimizes accordingly:

```python
# Automatic ZeroGPU detection
try:
    import spaces
    ZEROGPU_AVAILABLE = True
except ImportError:
    ZEROGPU_AVAILABLE = False

# GPU-optimized functions
@spaces.GPU(duration=120)  # 2 minutes for action generation
def generate_action(self, image, goal, instruction):
    # GPU-accelerated inference
    pass

@spaces.GPU(duration=90)   # 1.5 minutes for chat responses
def chat_with_model(self, message, history, image):
    # Interactive chat with GPU acceleration
    pass
```

## 🎯 How to Use

### Basic Usage

1. **Load Model**: Click "πŸš€ Load L-Operator Model" to initialize the model
2. **Upload Screenshot**: Upload an Android device screenshot
3. **Provide Instructions**: 
   - **Goal**: Describe what you want to achieve
   - **Step**: Provide specific step instructions
4. **Generate Action**: Click "🎯 Generate Action" to get JSON output

### Chat Interface

1. **Upload Screenshot**: Upload an Android screenshot
2. **Send Message**: Use structured format:
   ```
   Goal: Open the Settings app and navigate to Display settings
   Step: Tap on the Settings app icon on the home screen
   ```
3. **Get Response**: The model will generate JSON actions

### Example Episodes

The demo includes pre-loaded examples from the training episodes:

- **Episode 13**: Cruise deals app navigation
- **Episode 53**: Pinterest search for sustainability art
- **Episode 73**: Moon phases app usage

## πŸ“Š Expected Output Format

The model generates JSON actions in the following format:

```json
{
  "action_type": "tap",
  "x": 540,
  "y": 1200,
  "text": "Settings",
  "app_name": "com.android.settings",
  "confidence": 0.92
}
```

### Action Types

- `tap`: Tap at specific coordinates
- `click`: Click at specific coordinates
- `scroll`: Scroll in a direction (up/down/left/right)
- `input_text`: Input text
- `open_app`: Open a specific app
- `wait`: Wait for a moment

## πŸ› οΈ Technical Details

### Model Configuration

- **Device**: Automatically detects CUDA/CPU
- **Precision**: bfloat16 for CUDA, float32 for CPU
- **Generation**: Temperature 0.7, Top-p 0.9
- **Max Tokens**: 128 for action generation

### Architecture

- **Base Model**: LFM2-VL-1.6B from LiquidAI
- **Fine-tuning**: LoRA with rank 16, alpha 32
- **Target Modules**: q_proj, v_proj, fc1, fc2, linear, gate_proj, up_proj, down_proj

### Performance

- **Model Size**: ~1.6B parameters
- **Memory Usage**: ~4GB VRAM (CUDA) / ~8GB RAM (CPU)
- **Inference Speed**: Optimized for real-time use
- **Accuracy**: 98% action accuracy on test episodes

## 🎯 Use Cases

### 1. Mobile App Testing
- Automated UI testing for Android applications
- Cross-device compatibility validation
- Regression testing with visual verification

### 2. Accessibility Applications
- Voice-controlled device navigation
- Assistive technology integration
- Screen reader enhancement tools

### 3. Remote Support
- Remote device troubleshooting
- Automated device configuration
- Support ticket automation

### 4. Development Workflows
- UI/UX testing automation
- User flow validation
- Performance testing integration

## ⚠️ Important Notes

### Access Requirements

- **Investment Access**: This model is proprietary technology available exclusively to qualified investors under NDA
- **Authentication Required**: Must be authenticated with Hugging Face
- **Evaluation Only**: Access granted solely for investment evaluation purposes
- **Confidentiality**: All technical details are confidential

### ZeroGPU Limitations

- **Compatibility**: Currently exclusive to Gradio SDK
- **PyTorch Versions**: Limited to supported versions (2.1.2, 2.2.2, 2.4.0, 2.5.1)
- **Function Duration**: Maximum 60 seconds default, customizable up to 120 seconds
- **Queue Priority**: PRO users get x5 more daily usage and highest priority

### General Limitations

- **Market Hours**: Some features may be limited during market hours
- **Device Requirements**: Requires sufficient RAM/VRAM for model loading
- **Network**: Requires internet connection for model download
- **Authentication**: Must have approved access to the model

## πŸ”§ Troubleshooting

### Common Issues

1. **Model Loading Error**:
   - Ensure you're authenticated: `huggingface-cli login`
   - Check internet connection
   - Verify model access approval

2. **Memory Issues**:
   - Use CPU if GPU memory is insufficient
   - Close other applications
   - Consider using smaller batch sizes

3. **Authentication Errors**:
   - Re-login to Hugging Face
   - Check access approval status
   - Contact support if issues persist

4. **ZeroGPU Issues**:
   - Verify ZeroGPU is selected in Space settings
   - Check PyTorch version compatibility
   - Ensure function duration is within limits

### Performance Optimization

- **GPU Usage**: Use CUDA for faster inference
- **Memory Management**: Monitor VRAM usage
- **Batch Processing**: Process multiple images efficiently
- **ZeroGPU Optimization**: Specify appropriate function durations

## πŸ“ž Support

- **Investment Inquiries**: For investment-related questions and due diligence
- **Technical Support**: For technical issues with the demo
- **Model Access**: For access requests to the L-Operator model
- **ZeroGPU Support**: [ZeroGPU Documentation](https://huggingface.co/docs/hub/spaces-zerogpu)

## πŸ“„ License

This demo is provided under the same terms as the L-Operator model:

- **Proprietary Technology**: Owned by Tonic
- **Investment Evaluation**: Access granted solely for investment evaluation
- **NDA Required**: All access is subject to Non-Disclosure Agreement
- **No Commercial Use**: Without written consent

## πŸ™ Acknowledgments

- **LiquidAI**: For the base LFM2-VL model
- **Hugging Face**: For the transformers library, hosting, and ZeroGPU infrastructure
- **Gradio**: For the excellent UI framework

## πŸ”— Links

- [L-Operator Model](https://huggingface.co/Tonic/l-android-control)
- [Base Model (LFM2-VL-1.6B)](https://huggingface.co/LiquidAI/LFM2-VL-1.6B)
- [ZeroGPU Documentation](https://huggingface.co/docs/hub/spaces-zerogpu)
- [LiquidAI](https://liquid.ai/)
- [Tonic](https://tonic.ai/)

---

**Made with ❀️ by Tonic**