File size: 24,540 Bytes
23d4aef
 
6b4a0c8
23d4aef
 
 
 
 
 
 
926f049
483aa90
 
 
 
926f049
483aa90
 
 
 
 
 
 
 
 
 
 
 
 
23d4aef
 
 
 
 
1a36286
23d4aef
 
 
 
 
 
 
dae7e9c
23d4aef
6b4a0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d4aef
 
 
 
 
 
 
dae7e9c
23d4aef
dae7e9c
 
23d4aef
dae7e9c
23d4aef
 
 
dae7e9c
 
 
fda1dca
 
 
 
 
 
 
 
dae7e9c
fda1dca
 
 
dae7e9c
 
23d4aef
 
dae7e9c
23d4aef
dae7e9c
7dfb388
 
dae7e9c
23d4aef
 
bb7bd59
23d4aef
 
 
709ae40
23d4aef
 
 
 
 
 
 
 
709ae40
 
 
 
 
 
 
23d4aef
 
 
 
 
 
 
 
 
 
 
709ae40
23d4aef
 
 
 
cccf604
 
709ae40
 
 
 
 
 
 
 
23d4aef
31cdfbf
23d4aef
31cdfbf
 
 
 
23d4aef
31cdfbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d4aef
 
 
 
 
c8e9e6f
23d4aef
 
 
 
a0c936d
c8e9e6f
 
6b4a0c8
c8e9e6f
 
6b4a0c8
c8e9e6f
a0c936d
6b4a0c8
a0c936d
c8e9e6f
6b4a0c8
c8e9e6f
b7cacdf
c8e9e6f
 
 
 
 
 
 
 
 
 
 
6b4a0c8
c8e9e6f
 
6b4a0c8
c8e9e6f
 
 
 
 
a0c936d
 
6b4a0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8e9e6f
b7cacdf
c8e9e6f
6b4a0c8
 
 
 
 
 
 
 
81e328a
 
23d4aef
d3f57e1
23d4aef
fda1dca
23d4aef
1c19049
a6b3bc7
1c19049
 
 
 
 
 
 
 
 
 
 
 
a6b3bc7
fda1dca
a6b3bc7
fda1dca
dae7e9c
a6b3bc7
7dfb388
 
 
a6b3bc7
81e328a
7dfb388
 
 
d3f57e1
 
7dfb388
ff310d7
 
7dfb388
a0c936d
 
 
 
 
 
cccf604
a0c936d
cccf604
ff310d7
d3f57e1
a0c936d
 
ff310d7
 
7dfb388
dae7e9c
7dfb388
fda1dca
 
23d4aef
 
 
fda1dca
d3f57e1
23d4aef
 
 
 
c8e9e6f
23d4aef
 
483aa90
 
23d4aef
 
 
 
c8e9e6f
 
23d4aef
6b4a0c8
 
 
 
 
 
23d4aef
 
483aa90
 
23d4aef
483aa90
 
 
 
 
 
23d4aef
 
 
c8e9e6f
 
 
 
 
b7cacdf
 
c8e9e6f
 
 
 
 
 
7dfb388
a0c936d
 
 
 
 
 
 
c8e9e6f
 
 
 
6b4a0c8
 
 
 
 
 
 
 
 
 
c8e9e6f
 
 
 
 
 
 
23d4aef
6b4a0c8
c8e9e6f
 
 
a0c936d
6b4a0c8
 
 
 
 
c8e9e6f
 
 
 
 
 
 
1c19049
 
 
 
a0c936d
1c19049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0c936d
 
 
 
 
 
1c19049
 
 
a0c936d
 
 
6b4a0c8
 
 
1c19049
c8e9e6f
 
 
 
 
 
 
dae7e9c
c8e9e6f
 
 
 
 
 
dae7e9c
c8e9e6f
 
b7cacdf
23d4aef
 
93727c5
23d4aef
 
 
 
dae7e9c
23d4aef
dae7e9c
 
 
 
 
 
483aa90
 
 
 
dae7e9c
 
483aa90
 
dae7e9c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces

title = """# L-Operator: 🤖Android📲Device🎮Control """
description = """
        
        **Lightweight Multimodal Android Device Control Agent**
        
        This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI/LFM2-VL-1.6B model, 
        optimized for Android device control through visual understanding and action generation.
        
        ## 🚀 How to Use
        
        1. **Upload Screenshot**: Upload an Android device screenshot
        2. **Describe Goal**: Enter what you want to accomplish
        3. **Get Actions**: The model will generate JSON actions for Android device control
        """
joinus = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [MultiTonic](https://github.com/MultiTonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Model configuration
MODEL_ID = "Tonic/l-operator"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
    logger.warning("Please set HF_TOKEN in your environment variables or Spaces secrets.")

def create_annotated_image(image: Image.Image, x: int, y: int, action_type: str = "click") -> Image.Image:
    """Create an image with a bounding box around the specified coordinates"""
    try:
        # Create a copy of the original image
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)
        
        # Define bounding box parameters - make it generous as requested
        box_size = 120  # Increased size for more generous bounding box
        box_color = (255, 0, 0)  # Red color
        line_width = 4  # Thicker line for better visibility
        
        # Calculate bounding box coordinates
        left = max(0, x - box_size // 2)
        top = max(0, y - box_size // 2)
        right = min(image.width, x + box_size // 2)
        bottom = min(image.height, y + box_size // 2)
        
        # Draw the bounding box with rounded corners effect
        draw.rectangle([left, top, right, bottom], outline=box_color, width=line_width)
        
        # Draw corner indicators for better visibility
        corner_size = 15
        # Top-left corner
        draw.line([left, top, left + corner_size, top], fill=box_color, width=line_width)
        draw.line([left, top, left, top + corner_size], fill=box_color, width=line_width)
        # Top-right corner
        draw.line([right - corner_size, top, right, top], fill=box_color, width=line_width)
        draw.line([right, top, right, top + corner_size], fill=box_color, width=line_width)
        # Bottom-left corner
        draw.line([left, bottom - corner_size, left, bottom], fill=box_color, width=line_width)
        draw.line([left, bottom, left + corner_size, bottom], fill=box_color, width=line_width)
        # Bottom-right corner
        draw.line([right - corner_size, bottom, right, bottom], fill=box_color, width=line_width)
        draw.line([right, bottom - corner_size, right, bottom], fill=box_color, width=line_width)
        
        # Draw a crosshair at the exact point
        crosshair_size = 15
        crosshair_color = (255, 255, 0)  # Yellow crosshair for contrast
        draw.line([x - crosshair_size, y, x + crosshair_size, y], fill=crosshair_color, width=3)
        draw.line([x, y - crosshair_size, x, y + crosshair_size], fill=crosshair_color, width=3)
        
        # Add a small circle at the center
        circle_radius = 4
        draw.ellipse([x - circle_radius, y - circle_radius, x + circle_radius, y + circle_radius], 
                    fill=crosshair_color, outline=box_color, width=2)
        
        # Add text label with better positioning
        try:
            font = ImageFont.load_default()
        except:
            font = ImageFont.load_default()
        
        label_text = f"{action_type.upper()}: ({x}, {y})"
        text_bbox = draw.textbbox((0, 0), label_text, font=font)
        text_width = text_bbox[2] - text_bbox[0]
        text_height = text_bbox[3] - text_bbox[1]
        
        # Position text above the bounding box, but ensure it's visible
        text_x = max(5, left)
        text_y = max(5, top - text_height - 10)
        
        # If text would go off the top, position it below the box
        if text_y < 5:
            text_y = min(image.height - text_height - 5, bottom + 10)
        
        # Draw text background with better contrast
        draw.rectangle([text_x - 4, text_y - 4, text_x + text_width + 4, text_y + text_height + 4], 
                      fill=(0, 0, 0, 180))
        
        # Draw text
        draw.text((text_x, text_y), label_text, fill=(255, 255, 255), font=font)
        
        return annotated_image
        
    except Exception as e:
        logger.error(f"Error creating annotated image: {str(e)}")
        return image  # Return original image if annotation fails

def parse_action_response(response: str) -> tuple:
    """Parse the action response and extract coordinates if present"""
    try:
        # Try to parse as JSON
        if response.strip().startswith('{'):
            action_data = json.loads(response)
            
            # Check if it's a click action with coordinates
            if (action_data.get('action_type') == 'click' and 
                'x' in action_data and 'y' in action_data):
                return action_data, True
            else:
                return action_data, False
        else:
            return response, False
            
    except json.JSONDecodeError:
        return response, False
    except Exception as e:
        logger.error(f"Error parsing action response: {str(e)}")
        return response, False

class LOperatorDemo:
    def __init__(self):
        self.model = None
        self.processor = None
        self.is_loaded = False
        
    def load_model(self):
        """Load the L-Operator model and processor with timeout handling"""
        try:
            import time
            start_time = time.time()
            logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")

            # Check if token is available
            if not HF_TOKEN:
                return "❌ HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."

            # Load model with progress logging
            logger.info("Downloading and loading model weights...")
            self.model = AutoModelForImageTextToText.from_pretrained(
                MODEL_ID,
                device_map="auto",
                torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
                trust_remote_code=True
            )

            # Load processor
            logger.info("Loading processor...")
            self.processor = AutoProcessor.from_pretrained(
                MODEL_ID,
                trust_remote_code=True
            )

            if DEVICE == "cpu":
                self.model = self.model.to(DEVICE)

            self.is_loaded = True
            load_time = time.time() - start_time
            logger.info(f"Model loaded successfully in {load_time:.1f} seconds")
            return f"✅ Model loaded successfully in {load_time:.1f} seconds"

        except Exception as e:
            logger.error(f"Error loading model: {str(e)}")
            return f"❌ Error loading model: {str(e)} - This may be a custom model requiring special handling"
    
    @spaces.GPU(duration=120)  # 2 minutes for action generation
    def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
        """Generate action based on image and text inputs using the same format as training"""
        if not self.is_loaded:
            return "❌ Model not loaded. Please load the model first."
        
        try:
            # Convert image to RGB if needed
            if image.mode != "RGB":
                image = image.convert("RGB")
            
            # Build conversation using the EXACT same format as training
            user_text = (
                f"Goal: {goal}\n"
                f"Step: {instruction}\n"
                "Respond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."
            )
            
            conversation = [
                {
                    "role": "system",
                    "content": [
                        {"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
                    ]
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": image},
                        {"type": "text", "text": user_text}
                    ]
                }
            ]
            
            logger.info("Processing conversation with processor...")
            
            # Process inputs using the same method as training
            inputs = self.processor.apply_chat_template(
                conversation,
                add_generation_prompt=True,
                return_tensors="pt",
                return_dict=True,
                tokenize=True,
            )
            
            logger.info(f"Processor output keys: {list(inputs.keys())}")
            
            # Move inputs to device
            for key, value in inputs.items():
                if isinstance(value, torch.Tensor):
                    inputs[key] = value.to(self.model.device)
            
            logger.info(f"Inputs shape: {inputs['input_ids'].shape}, device: {inputs['input_ids'].device}")
            
            # Generate response
            logger.info("Generating response...")
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=128,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    pad_token_id=self.processor.tokenizer.eos_token_id
                )
            
            logger.info("Decoding response...")
            # Decode the generated tokens
            response = self.processor.tokenizer.decode(
                outputs[0][inputs['input_ids'].shape[1]:], 
                skip_special_tokens=True
            )
            
            # Try to parse as JSON for better formatting
            try:
                parsed_response = json.loads(response)
                return json.dumps(parsed_response, indent=2)
            except:
                return response
                
        except Exception as e:
            logger.error(f"Error generating action: {str(e)}")
            return f"❌ Error generating action: {str(e)}"
    


# Initialize demo
demo_instance = LOperatorDemo()

def process_input(image, goal, step_instructions):
    """Process the input and generate action"""
    if image is None:
        return "❌ Please upload an Android screenshot image.", None
    
    if not goal.strip():
        return "❌ Please provide a goal.", None
    
    if not step_instructions.strip():
        return "❌ Please provide step instructions.", None
    
    if not demo_instance.is_loaded:
        return "❌ Model not loaded. Please wait for it to load automatically.", None
    
    try:
        # Handle different image formats
        pil_image = None
        if hasattr(image, 'mode'):  # PIL Image object
            pil_image = image
        elif isinstance(image, str) and os.path.exists(image):
            # Handle file path (from examples)
            pil_image = Image.open(image)
        elif hasattr(image, 'name') and os.path.exists(image.name):
            # Handle Gradio file object
            pil_image = Image.open(image.name)
        else:
            return "❌ Invalid image format. Please upload a valid image.", None
        
        if pil_image is None:
            return "❌ Failed to process image. Please try again.", None
        
        # Convert image to RGB if needed
        if pil_image.mode != "RGB":
            pil_image = pil_image.convert("RGB")
        
        # Generate action using goal and step instructions
        response = demo_instance.generate_action(pil_image, goal, step_instructions)
        
        # Parse the response to check for coordinates
        action_data, has_coordinates = parse_action_response(response)
        
        # If coordinates are found, create annotated image
        annotated_image = None
        if has_coordinates and isinstance(action_data, dict):
            x = action_data.get('x')
            y = action_data.get('y')
            action_type = action_data.get('action_type', 'click')
            
            if x is not None and y is not None:
                annotated_image = create_annotated_image(pil_image, x, y, action_type)
                logger.info(f"Created annotated image for coordinates ({x}, {y})")
        
        return response, annotated_image
        
    except Exception as e:
        logger.error(f"Error processing input: {str(e)}")
        return f"❌ Error: {str(e)}", None

def update_annotated_image_visibility(response, annotated_image):
    """Update the visibility of the annotated image based on whether coordinates are present"""
    if annotated_image is not None:
        return gr.update(visible=True, value=annotated_image)
    else:
        return gr.update(visible=False, value=None)


def load_example_episodes():
    """Load example episodes using PIL to load images directly"""
    examples = []

    try:
        # Updated to include all 12 episodes with appropriate screenshot selections
        episode_screenshots = {
            "episode_13": 3,      # Cruise deals app
            "episode_53": 5,      # Pinterest sustainability
            "episode_73": 3,      # Moon phases app
            "episode_16730": 4,   # Weather app forecast
            "episode_17562": 3,   # Ticktick reminder app
            "episode_19565": 4,   # New episode
            "episode_19649": 2,   # New episode
            "episode_5590": 3,    # New episode
            "episode_4712": 2,    # New episode
            "episode_3731": 2,    # New episode
            "episode_2080": 2,    # New episode
            "episode_1993": 2     # New episode
        }

        for episode_dir, screenshot_num in episode_screenshots.items():
            try:
                metadata_path = f"extracted_episodes_duckdb/{episode_dir}/metadata.json"
                image_path = f"extracted_episodes_duckdb/{episode_dir}/screenshots/screenshot_{screenshot_num}.png"
                
                # Check if both files exist
                if os.path.exists(metadata_path) and os.path.exists(image_path):
                    logger.info(f"Loading example from {episode_dir} using screenshot_{screenshot_num}.png")
                    
                    with open(metadata_path, "r") as f:
                        metadata = json.load(f)
                    
                    # Load image directly with PIL
                    pil_image = Image.open(image_path)
                    
                    episode_num = episode_dir.split('_')[1]
                    goal_text = metadata.get('goal', f'Episode {episode_num} example')
                    
                    # Get step instruction for the corresponding screenshot
                    step_instructions = metadata.get('step_instructions', [])
                    step_instruction = ""
                    if step_instructions and screenshot_num <= len(step_instructions):
                        step_instruction = step_instructions[screenshot_num - 1]
                    
                    logger.info(f"Episode {episode_num} goal: {goal_text}")
                    logger.info(f"Episode {episode_num} step instruction: {step_instruction}")
                    
                    examples.append([
                        pil_image,  # Use PIL Image object directly
                        goal_text,  # Use the goal text from metadata
                        step_instruction  # Use the step instruction for this screenshot
                    ])
                    logger.info(f"Successfully loaded example for Episode {episode_num}")
                    
            except Exception as e:
                logger.warning(f"Could not load example for {episode_dir}: {str(e)}")
                continue

    except Exception as e:
        logger.error(f"Error loading examples: {str(e)}")
        examples = []

    logger.info(f"Loaded {len(examples)} examples using PIL")
    return examples

# Create Gradio interface
def create_demo():
    """Create the Gradio demo interface using Blocks"""
    
    with gr.Blocks(
        title=title,
        theme=gr.themes.Monochrome(),
        css="""
        .gradio-container {
            max-width: 1200px !important;
        }
        .output-container {
            min-height: 200px;
        }
        .annotated-image-container {
            border: 2px solid #e0e0e0;
            border-radius: 8px;
            padding: 10px;
            margin-top: 10px;
        }
        """
    ) as demo:
        # Header section
        gr.Markdown(title)
        
        # Info section
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(description)
            with gr.Column(scale=1):
                gr.Markdown(joinus)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### 📱 Upload Screenshot")
                image_input = gr.Image(
                    label="Android Screenshot",
                    type="pil",
                    height=400
                )
                
                gr.Markdown("### 🎯 Goal")
                goal_input = gr.Textbox(
                    label="What would you like to accomplish?",
                    placeholder="e.g., Open the Settings app and navigate to Display settings",
                    lines=3
                )
                
                gr.Markdown("### 📝 Step Instructions")
                step_instructions_input = gr.Textbox(
                    label="Specific step instruction for this screenshot",
                    placeholder="e.g., Tap on the Settings icon to open the app",
                    lines=2
                )
                
                # Process button
                process_btn = gr.Button("🚀 Generate Action", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                
                gr.Markdown("### 🎯 Annotated Screenshot")
                annotated_image_output = gr.Image(
                    label="Click Location Highlighted",
                    height=400,
                    visible=False,
                    interactive=False,
                    elem_classes=["annotated-image-container"]
                )

                gr.Markdown("### 📊 Generated Action")
                output_text = gr.Textbox(
                    label="JSON Action Output",
                    lines=15,
                    max_lines=20,
                    interactive=False,
                    elem_classes=["output-container"]
                )

        # Connect the process button
        process_btn.click(
            fn=process_input,
            inputs=[image_input, goal_input, step_instructions_input],
            outputs=[output_text, annotated_image_output]
        ).then(
            fn=update_annotated_image_visibility,
            inputs=[output_text, annotated_image_output],
            outputs=annotated_image_output
        )
        
        # Load examples
        gr.Markdown("### 📚 Example Episodes")
        try:
            examples = load_example_episodes()
            if examples:
                # Organize examples in a grid layout (3 columns)
                for row_start in range(0, len(examples), 3):
                    with gr.Row():
                        for i in range(row_start, min(row_start + 3, len(examples))):
                            image, goal, step_instruction = examples[i]
                            with gr.Column(scale=1):
                                episode_num = i + 1
                                gr.Markdown(f"**Episode {episode_num}**")
                                example_image = gr.Image(
                                    value=image,
                                    label=f"Example {episode_num}",
                                    height=150,
                                    interactive=False
                                )
                                example_goal = gr.Textbox(
                                    value=goal,
                                    label="Goal",
                                    lines=3,
                                    interactive=False
                                )
                                example_step_instruction = gr.Textbox(
                                    value=step_instruction,
                                    label="Step Instruction",
                                    lines=2,
                                    interactive=False
                                )
                                # Create a button to load this example
                                load_example_btn = gr.Button(f"Load Example {episode_num}", size="sm")
                                load_example_btn.click(
                                    fn=lambda img, g, s: (img, g, s),
                                    inputs=[example_image, example_goal, example_step_instruction],
                                    outputs=[image_input, goal_input, step_instructions_input]
                                ).then(
                                    fn=lambda: (None, gr.update(visible=False)),
                                    outputs=[output_text, annotated_image_output]
                                )
        except Exception as e:
            logger.warning(f"Failed to load examples: {str(e)}")
            gr.Markdown("❌ Failed to load examples. Please upload your own screenshot.")
        
        # Load model automatically on startup
        def load_model_on_startup():
            """Load model automatically without user feedback"""
            if not demo_instance.is_loaded:
                logger.info("Loading L-Operator model automatically...")
                try:
                    demo_instance.load_model()
                    logger.info("Model loaded successfully in background")
                except Exception as e:
                    logger.error(f"Failed to load model: {str(e)}")

        # Load model automatically on page load
        demo.load(fn=load_model_on_startup)
        
        gr.Markdown("""
        ---
        **Made with ❤️ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control) 
        """)
    
    return demo

# Create and launch the demo with optimized settings
if __name__ == "__main__":
    try:
        logger.info("Creating Gradio demo interface...")
        demo = create_demo()

        logger.info("Launching Gradio server...")
        demo.launch(
            # server_name="0.0.0.0",
            # server_port=7860,
            # share=False,
            # debug=False,  # Disable debug to reduce startup time
            show_error=True,
            ssr_mode=False,
            # max_threads=2,  # Limit threads to prevent resource exhaustion
            # quiet=True  # Reduce startup logging noise
        )
    except Exception as e:
        logger.error(f"Failed to launch Gradio app: {str(e)}")
        raise