Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,540 Bytes
23d4aef 6b4a0c8 23d4aef 926f049 483aa90 926f049 483aa90 23d4aef 1a36286 23d4aef dae7e9c 23d4aef 6b4a0c8 23d4aef dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c fda1dca dae7e9c fda1dca dae7e9c 23d4aef dae7e9c 23d4aef dae7e9c 7dfb388 dae7e9c 23d4aef bb7bd59 23d4aef 709ae40 23d4aef 709ae40 23d4aef 709ae40 23d4aef cccf604 709ae40 23d4aef 31cdfbf 23d4aef 31cdfbf 23d4aef 31cdfbf 23d4aef c8e9e6f 23d4aef a0c936d c8e9e6f 6b4a0c8 c8e9e6f 6b4a0c8 c8e9e6f a0c936d 6b4a0c8 a0c936d c8e9e6f 6b4a0c8 c8e9e6f b7cacdf c8e9e6f 6b4a0c8 c8e9e6f 6b4a0c8 c8e9e6f a0c936d 6b4a0c8 c8e9e6f b7cacdf c8e9e6f 6b4a0c8 81e328a 23d4aef d3f57e1 23d4aef fda1dca 23d4aef 1c19049 a6b3bc7 1c19049 a6b3bc7 fda1dca a6b3bc7 fda1dca dae7e9c a6b3bc7 7dfb388 a6b3bc7 81e328a 7dfb388 d3f57e1 7dfb388 ff310d7 7dfb388 a0c936d cccf604 a0c936d cccf604 ff310d7 d3f57e1 a0c936d ff310d7 7dfb388 dae7e9c 7dfb388 fda1dca 23d4aef fda1dca d3f57e1 23d4aef c8e9e6f 23d4aef 483aa90 23d4aef c8e9e6f 23d4aef 6b4a0c8 23d4aef 483aa90 23d4aef 483aa90 23d4aef c8e9e6f b7cacdf c8e9e6f 7dfb388 a0c936d c8e9e6f 6b4a0c8 c8e9e6f 23d4aef 6b4a0c8 c8e9e6f a0c936d 6b4a0c8 c8e9e6f 1c19049 a0c936d 1c19049 a0c936d 1c19049 a0c936d 6b4a0c8 1c19049 c8e9e6f dae7e9c c8e9e6f dae7e9c c8e9e6f b7cacdf 23d4aef 93727c5 23d4aef dae7e9c 23d4aef dae7e9c 483aa90 dae7e9c 483aa90 dae7e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
import gradio as gr
import torch
from PIL import Image, ImageDraw, ImageFont
import json
import os
from transformers import AutoProcessor, AutoModelForImageTextToText
from typing import List, Dict, Any
import logging
import spaces
title = """# L-Operator: 🤖Android📲Device🎮Control """
description = """
**Lightweight Multimodal Android Device Control Agent**
This demo showcases the L-Operator model, a fine-tuned multimodal AI agent based on LiquidAI/LFM2-VL-1.6B model,
optimized for Android device control through visual understanding and action generation.
## 🚀 How to Use
1. **Upload Screenshot**: Upload an Android device screenshot
2. **Describe Goal**: Enter what you want to accomplish
3. **Get Actions**: The model will generate JSON actions for Android device control
"""
joinus = """
## Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [MultiTonic](https://github.com/MultiTonic)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
"""
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Model configuration
MODEL_ID = "Tonic/l-operator"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Get Hugging Face token from environment variable (Spaces secrets)
import os
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logger.warning("HF_TOKEN not found in environment variables. Model access may be restricted.")
logger.warning("Please set HF_TOKEN in your environment variables or Spaces secrets.")
def create_annotated_image(image: Image.Image, x: int, y: int, action_type: str = "click") -> Image.Image:
"""Create an image with a bounding box around the specified coordinates"""
try:
# Create a copy of the original image
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
# Define bounding box parameters - make it generous as requested
box_size = 120 # Increased size for more generous bounding box
box_color = (255, 0, 0) # Red color
line_width = 4 # Thicker line for better visibility
# Calculate bounding box coordinates
left = max(0, x - box_size // 2)
top = max(0, y - box_size // 2)
right = min(image.width, x + box_size // 2)
bottom = min(image.height, y + box_size // 2)
# Draw the bounding box with rounded corners effect
draw.rectangle([left, top, right, bottom], outline=box_color, width=line_width)
# Draw corner indicators for better visibility
corner_size = 15
# Top-left corner
draw.line([left, top, left + corner_size, top], fill=box_color, width=line_width)
draw.line([left, top, left, top + corner_size], fill=box_color, width=line_width)
# Top-right corner
draw.line([right - corner_size, top, right, top], fill=box_color, width=line_width)
draw.line([right, top, right, top + corner_size], fill=box_color, width=line_width)
# Bottom-left corner
draw.line([left, bottom - corner_size, left, bottom], fill=box_color, width=line_width)
draw.line([left, bottom, left + corner_size, bottom], fill=box_color, width=line_width)
# Bottom-right corner
draw.line([right - corner_size, bottom, right, bottom], fill=box_color, width=line_width)
draw.line([right, bottom - corner_size, right, bottom], fill=box_color, width=line_width)
# Draw a crosshair at the exact point
crosshair_size = 15
crosshair_color = (255, 255, 0) # Yellow crosshair for contrast
draw.line([x - crosshair_size, y, x + crosshair_size, y], fill=crosshair_color, width=3)
draw.line([x, y - crosshair_size, x, y + crosshair_size], fill=crosshair_color, width=3)
# Add a small circle at the center
circle_radius = 4
draw.ellipse([x - circle_radius, y - circle_radius, x + circle_radius, y + circle_radius],
fill=crosshair_color, outline=box_color, width=2)
# Add text label with better positioning
try:
font = ImageFont.load_default()
except:
font = ImageFont.load_default()
label_text = f"{action_type.upper()}: ({x}, {y})"
text_bbox = draw.textbbox((0, 0), label_text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Position text above the bounding box, but ensure it's visible
text_x = max(5, left)
text_y = max(5, top - text_height - 10)
# If text would go off the top, position it below the box
if text_y < 5:
text_y = min(image.height - text_height - 5, bottom + 10)
# Draw text background with better contrast
draw.rectangle([text_x - 4, text_y - 4, text_x + text_width + 4, text_y + text_height + 4],
fill=(0, 0, 0, 180))
# Draw text
draw.text((text_x, text_y), label_text, fill=(255, 255, 255), font=font)
return annotated_image
except Exception as e:
logger.error(f"Error creating annotated image: {str(e)}")
return image # Return original image if annotation fails
def parse_action_response(response: str) -> tuple:
"""Parse the action response and extract coordinates if present"""
try:
# Try to parse as JSON
if response.strip().startswith('{'):
action_data = json.loads(response)
# Check if it's a click action with coordinates
if (action_data.get('action_type') == 'click' and
'x' in action_data and 'y' in action_data):
return action_data, True
else:
return action_data, False
else:
return response, False
except json.JSONDecodeError:
return response, False
except Exception as e:
logger.error(f"Error parsing action response: {str(e)}")
return response, False
class LOperatorDemo:
def __init__(self):
self.model = None
self.processor = None
self.is_loaded = False
def load_model(self):
"""Load the L-Operator model and processor with timeout handling"""
try:
import time
start_time = time.time()
logger.info(f"Loading model {MODEL_ID} on device {DEVICE}")
# Check if token is available
if not HF_TOKEN:
return "❌ HF_TOKEN not found. Please set HF_TOKEN in Spaces secrets."
# Load model with progress logging
logger.info("Downloading and loading model weights...")
self.model = AutoModelForImageTextToText.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
trust_remote_code=True
)
# Load processor
logger.info("Loading processor...")
self.processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True
)
if DEVICE == "cpu":
self.model = self.model.to(DEVICE)
self.is_loaded = True
load_time = time.time() - start_time
logger.info(f"Model loaded successfully in {load_time:.1f} seconds")
return f"✅ Model loaded successfully in {load_time:.1f} seconds"
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return f"❌ Error loading model: {str(e)} - This may be a custom model requiring special handling"
@spaces.GPU(duration=120) # 2 minutes for action generation
def generate_action(self, image: Image.Image, goal: str, instruction: str) -> str:
"""Generate action based on image and text inputs using the same format as training"""
if not self.is_loaded:
return "❌ Model not loaded. Please load the model first."
try:
# Convert image to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# Build conversation using the EXACT same format as training
user_text = (
f"Goal: {goal}\n"
f"Step: {instruction}\n"
"Respond with a JSON action containing relevant keys (e.g., action_type, x, y, text, app_name, direction)."
)
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful multimodal assistant by Liquid AI."}
]
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": user_text}
]
}
]
logger.info("Processing conversation with processor...")
# Process inputs using the same method as training
inputs = self.processor.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
tokenize=True,
)
logger.info(f"Processor output keys: {list(inputs.keys())}")
# Move inputs to device
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
inputs[key] = value.to(self.model.device)
logger.info(f"Inputs shape: {inputs['input_ids'].shape}, device: {inputs['input_ids'].device}")
# Generate response
logger.info("Generating response...")
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.processor.tokenizer.eos_token_id
)
logger.info("Decoding response...")
# Decode the generated tokens
response = self.processor.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
)
# Try to parse as JSON for better formatting
try:
parsed_response = json.loads(response)
return json.dumps(parsed_response, indent=2)
except:
return response
except Exception as e:
logger.error(f"Error generating action: {str(e)}")
return f"❌ Error generating action: {str(e)}"
# Initialize demo
demo_instance = LOperatorDemo()
def process_input(image, goal, step_instructions):
"""Process the input and generate action"""
if image is None:
return "❌ Please upload an Android screenshot image.", None
if not goal.strip():
return "❌ Please provide a goal.", None
if not step_instructions.strip():
return "❌ Please provide step instructions.", None
if not demo_instance.is_loaded:
return "❌ Model not loaded. Please wait for it to load automatically.", None
try:
# Handle different image formats
pil_image = None
if hasattr(image, 'mode'): # PIL Image object
pil_image = image
elif isinstance(image, str) and os.path.exists(image):
# Handle file path (from examples)
pil_image = Image.open(image)
elif hasattr(image, 'name') and os.path.exists(image.name):
# Handle Gradio file object
pil_image = Image.open(image.name)
else:
return "❌ Invalid image format. Please upload a valid image.", None
if pil_image is None:
return "❌ Failed to process image. Please try again.", None
# Convert image to RGB if needed
if pil_image.mode != "RGB":
pil_image = pil_image.convert("RGB")
# Generate action using goal and step instructions
response = demo_instance.generate_action(pil_image, goal, step_instructions)
# Parse the response to check for coordinates
action_data, has_coordinates = parse_action_response(response)
# If coordinates are found, create annotated image
annotated_image = None
if has_coordinates and isinstance(action_data, dict):
x = action_data.get('x')
y = action_data.get('y')
action_type = action_data.get('action_type', 'click')
if x is not None and y is not None:
annotated_image = create_annotated_image(pil_image, x, y, action_type)
logger.info(f"Created annotated image for coordinates ({x}, {y})")
return response, annotated_image
except Exception as e:
logger.error(f"Error processing input: {str(e)}")
return f"❌ Error: {str(e)}", None
def update_annotated_image_visibility(response, annotated_image):
"""Update the visibility of the annotated image based on whether coordinates are present"""
if annotated_image is not None:
return gr.update(visible=True, value=annotated_image)
else:
return gr.update(visible=False, value=None)
def load_example_episodes():
"""Load example episodes using PIL to load images directly"""
examples = []
try:
# Updated to include all 12 episodes with appropriate screenshot selections
episode_screenshots = {
"episode_13": 3, # Cruise deals app
"episode_53": 5, # Pinterest sustainability
"episode_73": 3, # Moon phases app
"episode_16730": 4, # Weather app forecast
"episode_17562": 3, # Ticktick reminder app
"episode_19565": 4, # New episode
"episode_19649": 2, # New episode
"episode_5590": 3, # New episode
"episode_4712": 2, # New episode
"episode_3731": 2, # New episode
"episode_2080": 2, # New episode
"episode_1993": 2 # New episode
}
for episode_dir, screenshot_num in episode_screenshots.items():
try:
metadata_path = f"extracted_episodes_duckdb/{episode_dir}/metadata.json"
image_path = f"extracted_episodes_duckdb/{episode_dir}/screenshots/screenshot_{screenshot_num}.png"
# Check if both files exist
if os.path.exists(metadata_path) and os.path.exists(image_path):
logger.info(f"Loading example from {episode_dir} using screenshot_{screenshot_num}.png")
with open(metadata_path, "r") as f:
metadata = json.load(f)
# Load image directly with PIL
pil_image = Image.open(image_path)
episode_num = episode_dir.split('_')[1]
goal_text = metadata.get('goal', f'Episode {episode_num} example')
# Get step instruction for the corresponding screenshot
step_instructions = metadata.get('step_instructions', [])
step_instruction = ""
if step_instructions and screenshot_num <= len(step_instructions):
step_instruction = step_instructions[screenshot_num - 1]
logger.info(f"Episode {episode_num} goal: {goal_text}")
logger.info(f"Episode {episode_num} step instruction: {step_instruction}")
examples.append([
pil_image, # Use PIL Image object directly
goal_text, # Use the goal text from metadata
step_instruction # Use the step instruction for this screenshot
])
logger.info(f"Successfully loaded example for Episode {episode_num}")
except Exception as e:
logger.warning(f"Could not load example for {episode_dir}: {str(e)}")
continue
except Exception as e:
logger.error(f"Error loading examples: {str(e)}")
examples = []
logger.info(f"Loaded {len(examples)} examples using PIL")
return examples
# Create Gradio interface
def create_demo():
"""Create the Gradio demo interface using Blocks"""
with gr.Blocks(
title=title,
theme=gr.themes.Monochrome(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.output-container {
min-height: 200px;
}
.annotated-image-container {
border: 2px solid #e0e0e0;
border-radius: 8px;
padding: 10px;
margin-top: 10px;
}
"""
) as demo:
# Header section
gr.Markdown(title)
# Info section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(description)
with gr.Column(scale=1):
gr.Markdown(joinus)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📱 Upload Screenshot")
image_input = gr.Image(
label="Android Screenshot",
type="pil",
height=400
)
gr.Markdown("### 🎯 Goal")
goal_input = gr.Textbox(
label="What would you like to accomplish?",
placeholder="e.g., Open the Settings app and navigate to Display settings",
lines=3
)
gr.Markdown("### 📝 Step Instructions")
step_instructions_input = gr.Textbox(
label="Specific step instruction for this screenshot",
placeholder="e.g., Tap on the Settings icon to open the app",
lines=2
)
# Process button
process_btn = gr.Button("🚀 Generate Action", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### 🎯 Annotated Screenshot")
annotated_image_output = gr.Image(
label="Click Location Highlighted",
height=400,
visible=False,
interactive=False,
elem_classes=["annotated-image-container"]
)
gr.Markdown("### 📊 Generated Action")
output_text = gr.Textbox(
label="JSON Action Output",
lines=15,
max_lines=20,
interactive=False,
elem_classes=["output-container"]
)
# Connect the process button
process_btn.click(
fn=process_input,
inputs=[image_input, goal_input, step_instructions_input],
outputs=[output_text, annotated_image_output]
).then(
fn=update_annotated_image_visibility,
inputs=[output_text, annotated_image_output],
outputs=annotated_image_output
)
# Load examples
gr.Markdown("### 📚 Example Episodes")
try:
examples = load_example_episodes()
if examples:
# Organize examples in a grid layout (3 columns)
for row_start in range(0, len(examples), 3):
with gr.Row():
for i in range(row_start, min(row_start + 3, len(examples))):
image, goal, step_instruction = examples[i]
with gr.Column(scale=1):
episode_num = i + 1
gr.Markdown(f"**Episode {episode_num}**")
example_image = gr.Image(
value=image,
label=f"Example {episode_num}",
height=150,
interactive=False
)
example_goal = gr.Textbox(
value=goal,
label="Goal",
lines=3,
interactive=False
)
example_step_instruction = gr.Textbox(
value=step_instruction,
label="Step Instruction",
lines=2,
interactive=False
)
# Create a button to load this example
load_example_btn = gr.Button(f"Load Example {episode_num}", size="sm")
load_example_btn.click(
fn=lambda img, g, s: (img, g, s),
inputs=[example_image, example_goal, example_step_instruction],
outputs=[image_input, goal_input, step_instructions_input]
).then(
fn=lambda: (None, gr.update(visible=False)),
outputs=[output_text, annotated_image_output]
)
except Exception as e:
logger.warning(f"Failed to load examples: {str(e)}")
gr.Markdown("❌ Failed to load examples. Please upload your own screenshot.")
# Load model automatically on startup
def load_model_on_startup():
"""Load model automatically without user feedback"""
if not demo_instance.is_loaded:
logger.info("Loading L-Operator model automatically...")
try:
demo_instance.load_model()
logger.info("Model loaded successfully in background")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
# Load model automatically on page load
demo.load(fn=load_model_on_startup)
gr.Markdown("""
---
**Made with ❤️ by Tonic** | [Model on Hugging Face](https://huggingface.co/Tonic/l-android-control)
""")
return demo
# Create and launch the demo with optimized settings
if __name__ == "__main__":
try:
logger.info("Creating Gradio demo interface...")
demo = create_demo()
logger.info("Launching Gradio server...")
demo.launch(
# server_name="0.0.0.0",
# server_port=7860,
# share=False,
# debug=False, # Disable debug to reduce startup time
show_error=True,
ssr_mode=False,
# max_threads=2, # Limit threads to prevent resource exhaustion
# quiet=True # Reduce startup logging noise
)
except Exception as e:
logger.error(f"Failed to launch Gradio app: {str(e)}")
raise |