import re import joblib from fastapi import FastAPI, Request from pydantic import BaseModel from fastapi.middleware.cors import CORSMiddleware. from sentence_transformers import SentenceTransformer, util app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], # Or restrict to your domain allow_methods=["*"], allow_headers=["*"], ) # Load model and vectorizer model = joblib.load("team_classifier_model.joblib") vectorizer = joblib.load("tfidf_vectorizer.joblib") sbert_model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2") def clean_text(text): text = re.sub(r"\s+", " ", str(text)) text = re.sub(r"[^\w\s]", "", text) return text.lower().strip() class InputText(BaseModel): subject: str message: str class SimilarityRequest(BaseModel): text1: str text2: str @app.get("/") def root(): return {"status": "running", "message": "Use POST /classify"} @app.post("/classify") async def classify_ticket(data: InputText): combined = clean_text(f"{data.subject} {data.message}") vec = vectorizer.transform([combined]) prediction = model.predict(vec)[0] return {"team": prediction} @app.post("/similarity") async def compute_similarity(data: SimilarityRequest): emb1 = sbert_model.encode(data.text1, convert_to_tensor=True) emb2 = sbert_model.encode(data.text2, convert_to_tensor=True) score = util.pytorch_cos_sim(emb1, emb2).item() return {"similarity": score}