'''from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline import gradio as grad import ast #mdl_name = "deepset/roberta-base-squad2" #my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) mdl_name = "distilbert-base-cased-distilled-squad" my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name) def answer_question(question,context): text= "{"+"'question': '"+question+"','context': '"+context+"'}" di=ast.literal_eval(text) response = my_pipeline(di) return response grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() ''' ''' from transformers import pipeline import gradio as grad mdl_name = "VietAI/envit5-translation" opus_translator = pipeline("translation", model=mdl_name) def translate(text): response = opus_translator(text) return response grad.Interface(translate, inputs=["text",], outputs="text").launch() ''' '''5.11 from transformers import GPT2LMHeadModel,GPT2Tokenizer import gradio as grad mdl = GPT2LMHeadModel.from_pretrained('gpt2') gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2') def generate(starting_text): tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') gpt2_tensors = mdl.generate(tkn_ids) response = gpt2_tensors return response txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") out=grad.Textbox(lines=1, label="Generated Tensors") grad.Interface(generate, inputs=txt, outputs=out).launch() ''' '''5.12 from transformers import GPT2LMHeadModel,GPT2Tokenizer import gradio as grad mdl = GPT2LMHeadModel.from_pretrained('gpt2') gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2') def generate(starting_text): tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt') gpt2_tensors = mdl.generate(tkn_ids) response="" #response = gpt2_tensors for i, x in enumerate(gpt2_tensors): response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}" return response txt=grad.Textbox(lines=1, label="English", placeholder="English Text here") out=grad.Textbox(lines=1, label="Generated Tensors") grad.Interface(generate, inputs=txt, outputs=out).launch() ''' #5.20 from transformers import AutoModelWithLMHead, AutoTokenizer import gradio as grad text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap") def text2text(context,answer): input_text = "answer: %s context: %s " % (answer, context) features = text2text_tkn ([input_text], return_tensors='pt') output = mdl.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) response=text2text_tkn.decode(output[0]) return response context=grad.Textbox(lines=10, label="English", placeholder="Context") ans=grad.Textbox(lines=1, label="Answer") out=grad.Textbox(lines=1, label="Genereated Question") grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()