File size: 5,333 Bytes
47c04ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# πŸš€ Speed Optimized Summarization with DistilBART

The BART model is quite large (~1.6GB) and slow. I optimized it with a much faster, lighter model and better performance settings.

---

## πŸš€ Major Speed Optimizations Applied

### 1. Faster Model
- **Switched from** `facebook/bart-large-cnn` (**~1.6GB**)  
- **To** `sshleifer/distilbart-cnn-12-6` (**~400MB**)  
- πŸ”₯ **6x smaller model size** = Much faster loading and inference

### 2. Processing Optimizations
- **Smaller chunks:** 512 words vs 900 (faster processing)
- **Limited chunks:** Max 5 chunks processed (prevents hanging on huge docs)
- **Faster tokenization:** Word count instead of full tokenization for chunking
- **Reduced beam search:** 2 beams instead of 4 (2x faster)

### 3. Smart Summarization
- **Shorter summaries:** Reduced max lengths across all modes
- **Skip final summary:** For documents with ≀2 chunks (saves time)
- **Early stopping:** Enabled for faster convergence
- **Progress tracking:** Shows which chunk is being processed

### 4. Memory & Performance
- **Float16 precision:** Used when GPU is available (faster inference)
- **Optimized pipeline:** Better model loading with fallback
- **`optimum` library added:** For additional speed improvements

---

## ⚑ Expected Speed Improvements

| Task              | Before               | After                        |
|-------------------|----------------------|------------------------------|
| Model loading     | ~30+ seconds         | ~10 seconds                  |
| PDF processing    | Minutes              | ~5–15 seconds                |
| Memory usage      | ~1.6GB               | ~400MB                       |
| Overall speed     | Slow                 | πŸš€ 5–10x faster              |

---

## 🧬 What is DistilBART?

**DistilBART** is a **compressed version of the BART model** designed to be **lighter and faster** while retaining most of BART’s performance. It’s the result of **model distillation**, where a smaller model (the *student*) learns from a larger one (the *teacher*), in this case, `facebook/bart-large`.

| Attribute        | Description                                                         |
|------------------|---------------------------------------------------------------------|
| **Full Name**    | Distilled BART                                                      |
| **Base Model**   | `facebook/bart-large`                                               |
| **Distilled By** | Hugging Face πŸ€—                                                     |
| **Purpose**      | Faster inference and smaller footprint for tasks like summarization |
| **Architecture** | Encoder-decoder Transformer, like BART, but with fewer layers       |

---

## βš™οΈ Key Differences: BART vs DistilBART

| Feature        | BART (Large) | DistilBART            |
|----------------|--------------|------------------------|
| Encoder Layers | 12           | 6                      |
| Decoder Layers | 12           | 6                      |
| Parameters     | ~406M        | ~222M                  |
| Model Size     | ~1.6GB       | ~400MB (~55% smaller)  |
| Speed          | Slower       | ~2x faster             |
| Performance    | Very high    | Slight drop (~1–2%)    |

---

## 🎯 Use Cases

- βœ… **Text Summarization** (primary use case)
- 🌐 **Translation** (basic use)
- ⚑ Ideal for **edge devices** or **real-time systems** where speed & size matter

---

## πŸ§ͺ Example: Summarization with DistilBART

You can easily use DistilBART with Hugging Face Transformers:

```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load pretrained DistilBART model
tokenizer = AutoTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
model = AutoModelForSeq2SeqLM.from_pretrained("sshleifer/distilbart-cnn-12-6")

# Input text
ARTICLE = "The Indian Space Research Organisation (ISRO) launched a new satellite today from the Satish Dhawan Space Centre..."

# Tokenize and summarize
inputs = tokenizer([ARTICLE], max_length=1024, return_tensors="pt", truncation=True)
summary_ids = model.generate(
    inputs["input_ids"],
    max_length=150,
    min_length=40,
    length_penalty=2.0,
    num_beams=4,
    early_stopping=True
)

print(tokenizer.decode(summary_ids[0], skip_special_tokens=True))
````

---

## πŸ“¦ Available Variants

| Model Name                        | Task                         | Description                              |
| --------------------------------- | ---------------------------- | ---------------------------------------- |
| `sshleifer/distilbart-cnn-12-6`   | Summarization                | Distilled from `facebook/bart-large-cnn` |
| `philschmid/distilbart-xsum-12-6` | Summarization (XSUM dataset) | Short, abstractive summaries             |

πŸ”Ž [Find more on Hugging Face Model Hub](https://huggingface.co/models?search=distilbart)

---

## πŸ“˜ Summary

* 🧠 **DistilBART** is a distilled, faster version of **BART**
* 🧩 Ideal for summarization tasks with lower memory and latency requirements
* πŸ’‘ Trained using **knowledge distillation** from `facebook/bart-large`
* βš™οΈ Works well in apps needing faster performance without significant loss in quality

---

βœ… **Try it now β€” it should be significantly faster!** πŸƒβ€β™‚οΈπŸ’¨

```




Thank You
```