import os import re import streamlit as st from huggingface_hub import InferenceClient from dotenv import load_dotenv # Load environment variables from .env file load_dotenv() # Set Streamlit page configuration st.set_page_config(page_title="🎓 Education Fellow Chatbot", layout="wide") st.title("🎓 Education Fellow Chatbot") # Initialize session state for chat history if "history" not in st.session_state: st.session_state.history = [] # stores tuples of (sender, message) # Initialize the Hugging Face Inference Client try: hf_token = os.environ["HUGGINGFACEHUB_API_TOKEN"] client = InferenceClient( model="deepseek-ai/DeepSeek-R1", token=hf_token ) except KeyError: st.error("❌ HUGGINGFACEHUB_API_TOKEN is not set in environment variables.") st.stop() # Function to structure chat history as messages for the API def build_messages(): return [ {"role": "user" if sender == "You" else "assistant", "content": message} for sender, message in st.session_state.history ] # Function to remove tags from the model response def clean_think_tags(text: str) -> str: return re.sub(r".*?", "", text, flags=re.DOTALL).strip() # Display previous chat messages for sender, message in st.session_state.history: with st.chat_message("user" if sender == "You" else "assistant"): st.write(message) # Chat input box user_input = st.chat_input("Ask me anything related to education, classrooms, or pedagogy…") # If there's new input from the user if user_input: st.session_state.history.append(("You", user_input)) with st.chat_message("user"): st.write(user_input) with st.chat_message("assistant"): placeholder = st.empty() placeholder.write("⏳ Thinking...") try: response = client.chat.completions.create( model="deepseek-ai/DeepSeek-R1", messages=build_messages() ) raw_output = response.choices[0].message["content"] reply = clean_think_tags(raw_output) except Exception as e: reply = f"❌ API Error: {e}" placeholder.write(reply) st.session_state.history.append(("Bot", reply))