File size: 20,417 Bytes
dbbd401
 
 
 
 
 
 
223bfba
 
 
dbbd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223bfba
 
dbbd401
223bfba
dbbd401
 
 
 
 
 
223bfba
 
dbbd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223bfba
 
dbbd401
223bfba
 
dbbd401
223bfba
 
 
 
 
dbbd401
223bfba
dbbd401
223bfba
 
dbbd401
 
 
223bfba
 
dbbd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223bfba
dbbd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223bfba
dbbd401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# ==============================================================================
#  Tool World: Advanced Prototype (Hugging Face Space Version)
# ==============================================================================
#
#  This script has been updated to run as a Hugging Face Space.
#
#  Key Upgrades from the original script:
#  1.  **Hugging Face Model Integration**: Uses the fast 'Qwen/Qwen2-0.5B-Instruct'
#      model from the Hugging Face Hub for argument extraction.
#  2.  **Simplified Setup**: This model does not require a Hugging Face token.
#  3.  **Standard Dependencies**: All dependencies are managed via a
#      `requirements.txt` file.
#
# ==============================================================================

# ------------------------------
#  1. INSTALL & IMPORT PACKAGES
# ------------------------------
import numpy as np
import umap
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import matplotlib.pyplot as plt
import json
import os
from datetime import datetime, timedelta
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# ------------------------------
#  2. CONFIGURE & LOAD MODELS
# ------------------------------

print("βš™οΈ Loading embedding model...")
# Using a powerful model for better semantic understanding
embedder = SentenceTransformer('all-mpnet-base-v2')
print("βœ… Embedding model loaded.")

# --- Configuration for Hugging Face Model-based Argument Extraction ---
try:
    print("βš™οΈ Loading Hugging Face model for argument extraction...")
    # Using the fast Qwen2 0.5B Instruct model
    model_id = "Qwen/Qwen2-0.5B-Instruct"

    hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
    hf_model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
        device_map="auto" # Automatically use GPU if available
    )
    USE_HF_LLM = True
    # The Qwen2 tokenizer has a built-in chat template, so we don't need to set it manually.
    print(f"βœ… Successfully loaded '{model_id}' model.")

except Exception as e:
    USE_HF_LLM = False
    print(f"⚠️ WARNING: Could not load the Hugging Face model. Reason: {e}")
    print("   Argument extraction will be disabled.")


# ------------------------------
#  3. ADVANCED TOOL DEFINITION
# ------------------------------

class Tool:
    """
    Represents a tool with structured arguments and rich descriptive data
    for high-quality embedding.
    """
    def __init__(self, name, description, args_schema, function, examples=None):
        self.name = name
        self.description = description
        self.args_schema = args_schema
        self.function = function
        self.examples = examples or []
        self.embedding = self._create_embedding()

    def _create_embedding(self):
        """
        Creates a rich embedding by combining the tool's name, description,
        argument structure, and examples.
        """
        schema_str = json.dumps(self.args_schema, indent=2)
        examples_str = "\n".join([f" - Example: {ex['prompt']} -> Args: {json.dumps(ex['args'])}" for ex in self.examples])

        embedding_text = (
            f"Tool Name: {self.name}\n"
            f"Description: {self.description}\n"
            f"Argument Schema: {schema_str}\n"
            f"Usage Examples:\n{examples_str}"
        )
        return embedder.encode(embedding_text, convert_to_tensor=True)

    def __repr__(self):
        return f"<Tool: {self.name}>"

# ------------------------------
#  4. TOOL IMPLEMENTATIONS
# ------------------------------

def get_weather_forecast(location: str, days: int = 1):
    """Simulates fetching a weather forecast."""
    if not isinstance(location, str) or not isinstance(days, int):
        return {"error": "Invalid argument types. 'location' must be a string and 'days' an integer."}

    weather_conditions = ["Sunny", "Cloudy", "Rainy", "Windy", "Snowy"]
    response = {"location": location, "forecast": []}

    for i in range(days):
        date = (datetime.now() + timedelta(days=i)).strftime('%Y-%m-%d')
        condition = np.random.choice(weather_conditions)
        temp = np.random.randint(5, 25)
        response["forecast"].append({
            "date": date,
            "condition": condition,
            "temperature_celsius": temp
        })
    return response

def create_calendar_event(title: str, date: str, duration_minutes: int = 60, participants: list = None):
    """Simulates creating a calendar event."""
    try:
        # Check for relative terms like "tomorrow"
        if 'tomorrow' in date.lower():
            event_base_date = datetime.now() + timedelta(days=1)
            # Try to extract time, default to 9am if not specified
            try:
                time_part = datetime.strptime(date, '%I:%M %p').time()
            except ValueError:
                try:
                    time_part = datetime.strptime(date, '%H:%M').time()
                except ValueError:
                    time_part = datetime.strptime('09:00', '%H:%M').time()
            event_time = event_base_date.replace(hour=time_part.hour, minute=time_part.minute, second=0, microsecond=0)
        else:
            event_time = datetime.strptime(date, '%Y-%m-%d %H:%M')

        return {
            "status": "success",
            "event_created": {
                "title": title,
                "start_time": event_time.isoformat(),
                "end_time": (event_time + timedelta(minutes=duration_minutes)).isoformat(),
                "participants": participants or ["organizer"]
            }
        }
    except ValueError:
        return {"error": "Invalid date format. Please use 'YYYY-MM-DD HH:MM' or a relative term like 'tomorrow at 10:00'."}

def summarize_text(text: str, compression_level: str = 'medium'):
    """Summarizes a given text based on a compression level."""
    word_count = len(text.split())
    ratios = {'high': 0.2, 'medium': 0.4, 'low': 0.7}
    ratio = ratios.get(compression_level, 0.4)
    summary_length = int(word_count * ratio)
    summary = " ".join(text.split()[:summary_length])
    return {"summary": summary + "...", "original_word_count": word_count, "summary_word_count": summary_length}

def search_web(query: str, domain: str = None):
    """Simulates a web search, with an optional domain filter."""
    results = [
        f"Simulated result 1 for '{query}'",
        f"Simulated result 2 for '{query}'",
        f"Simulated result 3 for '{query}'"
    ]
    if domain:
        return {"status": f"Searching for '{query}' within '{domain}'...", "results": results}
    return {"status": f"Searching for '{query}'...", "results": results}


# ------------------------------
#  5. DEFINE THE TOOLSET
# ------------------------------

tools = [
    Tool(
        name="weather_reporter",
        description="Provides the weather forecast for a specific location for a given number of days.",
        args_schema={
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "The city and state, e.g., 'San Francisco, CA'"},
                "days": {"type": "integer", "description": "The number of days to forecast", "default": 1}
            },
            "required": ["location"]
        },
        function=get_weather_forecast,
        examples=[
            {"prompt": "what's the weather like in London for the next 3 days", "args": {"location": "London", "days": 3}},
            {"prompt": "forecast for New York tomorrow", "args": {"location": "New York", "days": 1}}
        ]
    ),
    Tool(
        name="calendar_creator",
        description="Creates a new event in the user's calendar.",
        args_schema={
            "type": "object",
            "properties": {
                "title": {"type": "string", "description": "The title of the calendar event"},
                "date": {"type": "string", "description": "The start date and time in 'YYYY-MM-DD HH:MM' format. Handles relative terms like 'tomorrow at 10:30 am'."},
                "duration_minutes": {"type": "integer", "description": "The duration of the event in minutes", "default": 60},
                "participants": {"type": "array", "items": {"type": "string"}, "description": "List of email addresses of participants"}
            },
            "required": ["title", "date"]
        },
        function=create_calendar_event,
        examples=[
            {"prompt": "Schedule a 'Project Sync' for tomorrow at 3pm with bob@example.com", "args": {"title": "Project Sync", "date": (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d 15:00'), "participants": ["bob@example.com"]}},
            {"prompt": "new event: Dentist appointment on 2025-12-20 at 10:00 for 45 mins", "args": {"title": "Dentist appointment", "date": "2025-12-20 10:00", "duration_minutes": 45}}
        ]
    ),
    Tool(
        name="text_summarizer",
        description="Summarizes a long piece of text. Can be set to high, medium, or low compression.",
        args_schema={
            "type": "object",
            "properties": {
                "text": {"type": "string", "description": "The text to be summarized."},
                "compression_level": {"type": "string", "enum": ["high", "medium", "low"], "description": "The level of summarization.", "default": "medium"}
            },
            "required": ["text"]
        },
        function=summarize_text,
        examples=[
            {"prompt": "summarize this article for me, make it very short: [long text...]", "args": {"text": "[long text...]", "compression_level": "high"}}
        ]
    ),
    Tool(
        name="web_search",
        description="Performs a web search to find information on a topic.",
        args_schema={
            "type": "object",
            "properties": {
                "query": {"type": "string", "description": "The search query."},
                "domain": {"type": "string", "description": "Optional: a specific website domain to search within (e.g., 'wikipedia.org')."}
            },
            "required": ["query"]
        },
        function=search_web,
        examples=[
            {"prompt": "who invented the light bulb", "args": {"query": "who invented the light bulb"}},
            {"prompt": "search for 'transformer models' on arxiv.org", "args": {"query": "transformer models", "domain": "arxiv.org"}}
        ]
    )
]

print(f"βœ… {len(tools)} tools defined and embedded.")

# ------------------------------
#  6. CORE LOGIC: TOOL SELECTION & ARGUMENT EXTRACTION
# ------------------------------

def find_best_tool(user_intent: str):
    """Finds the most semantically similar tool for a user's intent."""
    intent_embedding = embedder.encode(user_intent, convert_to_tensor=True)
    # Move tool embeddings to the same device as the intent embedding
    tool_embeddings = [tool.embedding.to(intent_embedding.device) for tool in tools]
    similarities = [util.pytorch_cos_sim(intent_embedding, tool_emb).item() for tool_emb in tool_embeddings]
    best_index = int(np.argmax(similarities))
    best_tool = tools[best_index]
    best_score = similarities[best_index]
    return best_tool, best_score, similarities

def extract_arguments_hf(user_prompt: str, tool: Tool):
    """
    Uses a local Hugging Face model to extract structured arguments.
    """
    system_prompt = f"""
You are an expert at extracting structured data from natural language.
Your task is to analyze the user's prompt and extract the arguments required to call the tool: '{tool.name}'.

You must adhere to the following JSON schema for the arguments:
{json.dumps(tool.args_schema, indent=2)}

- If a value is not present in the prompt for a non-required field, omit it from the JSON.
- If a required value is missing, return a JSON object with an "error" key explaining what is missing.
- Today's date is {datetime.now().strftime('%Y-%m-%d')}. If the user says "tomorrow", use {(datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')}.
- Respond ONLY with a valid JSON object. Do not include any other text, explanation, or markdown code blocks.
"""

    # Qwen2 instruction-following format
    chat = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt},
    ]

    try:
        # The tokenizer for Qwen2 has a built-in chat template.
        prompt = hf_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
        inputs = hf_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(hf_model.device)

        # Generate with the model
        outputs = hf_model.generate(input_ids=inputs, max_new_tokens=256, do_sample=False)
        decoded_output = hf_tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)

        # Clean the response to find the JSON object
        json_str = decoded_output.strip()

        # Find the first '{' and the last '}' to get the JSON part
        json_start = json_str.find('{')
        json_end = json_str.rfind('}')

        if json_start != -1 and json_end != -1:
            json_str = json_str[json_start : json_end + 1]
            return json.loads(json_str)
        else:
            raise json.JSONDecodeError("No JSON object found in the model output.", json_str, 0)

    except Exception as e:
        print(f"Error during HF model inference or JSON parsing: {e}")
        return {"error": f"Failed to extract arguments with the local LLM. Details: {str(e)}"}

def execute_tool(user_prompt: str):
    """The main pipeline: Find tool, extract args, execute."""
    selected_tool, score, _ = find_best_tool(user_prompt)

    if USE_HF_LLM:
        print(f"βš™οΈ Selected Tool: {selected_tool.name}. Extracting arguments with Qwen2...")
        extracted_args = extract_arguments_hf(user_prompt, selected_tool)
    else:
        # Fallback if the model failed to load
        extracted_args = {"error": "Argument extraction is disabled because the Hugging Face model could not be loaded."}

    if 'error' in extracted_args:
        print(f"❌ Argument extraction failed: {extracted_args['error']}")
        # Ensure the final output string is valid JSON
        final_output_str = json.dumps({
            "error": "Execution failed during argument extraction.",
            "details": extracted_args.get('error', 'Unknown extraction error')
        })
        return (
            user_prompt,
            selected_tool.name,
            f"{score:.3f}",
            json.dumps(extracted_args, indent=2),
            final_output_str
        )

    print(f"βœ… Arguments extracted: {json.dumps(extracted_args, indent=2)}")

    try:
        print(f"πŸš€ Executing tool function: {selected_tool.name}...")
        output = selected_tool.function(**extracted_args)
        print(f"βœ… Execution complete.")
        output_str = json.dumps(output, indent=2)
    except Exception as e:
        print(f"❌ Tool execution failed: {e}")
        output_str = f'{{"error": "Tool execution failed", "details": "{str(e)}"}}'

    return (
        user_prompt,
        selected_tool.name,
        f"{score:.3f}",
        json.dumps(extracted_args, indent=2),
        output_str
    )


# ------------------------------
#  7. VISUALIZATION
# ------------------------------

def plot_tool_world(user_intent=None):
    """Generates a 2D UMAP plot of the tool latent space."""
    tool_vectors = [tool.embedding.cpu().numpy() for tool in tools]
    labels = [tool.name for tool in tools]
    all_vectors = tool_vectors

    if user_intent and user_intent.strip():
        intent_vector = embedder.encode(user_intent, convert_to_tensor=True).cpu().numpy()
        all_vectors.append(intent_vector)
        labels.append("Your Intent")

    # UMAP requires at least 2 neighbors
    n_neighbors = min(len(all_vectors) - 1, 5)
    if n_neighbors < 1:
        n_neighbors = 1

    reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=0.3, metric='cosine', random_state=42)

    # UMAP fit_transform requires at least 2 samples
    if len(all_vectors) < 2:
         # Create a dummy plot if there's not enough data
        fig, ax = plt.subplots(figsize=(10, 7))
        ax.text(0.5, 0.5, "Not enough data to create a plot.", ha='center', va='center')
        return fig

    reduced_vectors = reducer.fit_transform(all_vectors)

    plt.style.use('seaborn-v0_8-whitegrid')
    fig, ax = plt.subplots(figsize=(10, 7))

    for i, label in enumerate(labels):
        x, y = reduced_vectors[i]
        if label == "Your Intent":
            ax.scatter(x, y, color='red', s=150, zorder=5, label=label, marker='*')
            ax.text(x, y + 0.05, label, fontsize=12, ha='center', color='red', weight='bold')
        else:
            ax.scatter(x, y, s=100, alpha=0.8, label=label)
            ax.text(x, y + 0.05, label, fontsize=10, ha='center')

    ax.set_title("Tool World: Latent Space Map", fontsize=16)
    ax.set_xlabel("UMAP Dimension 1", fontsize=12)
    ax.set_ylabel("UMAP Dimension 2", fontsize=12)
    ax.grid(True)

    handles, labels_legend = ax.get_legend_handles_labels()
    by_label = dict(zip(labels_legend, handles))
    ax.legend(by_label.values(), by_label.keys())

    plt.tight_layout()
    return fig


# ------------------------------
#  8. GRADIO INTERFACE
# ------------------------------

print("πŸš€ Launching Gradio interface...")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ› οΈ Tool World: Advanced Prototype (Hugging Face Version)")
    gr.Markdown(
        "Enter a natural language command. The system will select the best tool, "
        "extract structured arguments with **Qwen/Qwen2-0.5B-Instruct**, and execute it."
    )

    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Textbox(
                label="Your Intent",
                placeholder="e.g., What's the weather in Paris for 2 days?",
                lines=3
            )
            run_btn = gr.Button("Invoke Tool", variant="primary")

            gr.Markdown("---")
            gr.Markdown("### Examples")
            gr.Examples(
                examples=[
                    "Schedule a 'Team Meeting' for tomorrow at 10:30 am",
                    "What is the weather forecast in Tokyo for the next 5 days?",
                    "search for the latest news on generative AI on reuters.com",
                    "Please give me a very short summary of this text: The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840."
                ],
                inputs=inp
            )

        with gr.Column(scale=2):
            gr.Markdown("### Invocation Details")
            with gr.Row():
                out_tool = gr.Textbox(label="Selected Tool", interactive=False)
                out_score = gr.Textbox(label="Similarity Score", interactive=False)

            out_args = gr.JSON(label="Extracted Arguments")
            out_result = gr.JSON(label="Tool Execution Output")

    with gr.Row():
        gr.Markdown("---")
        gr.Markdown("### Latent Space Visualization")
        plot_output = gr.Plot(label="Tool World Map")

    def process_and_plot(user_prompt):
        if not user_prompt or not user_prompt.strip():
            # Return empty state and the default plot
            return "", "", {}, {}, plot_tool_world()

        prompt, tool_name, score, args_json, result_json = execute_tool(user_prompt)
        fig = plot_tool_world(user_prompt)

        # Safely load JSON strings into objects for the UI
        try:
            args_obj = json.loads(args_json)
        except (json.JSONDecodeError, TypeError):
            args_obj = {"error": "Invalid JSON in arguments", "raw": args_json}

        try:
            result_obj = json.loads(result_json)
        except (json.JSONDecodeError, TypeError):
            result_obj = {"error": "Invalid JSON in result", "raw": result_json}

        return tool_name, score, args_obj, result_obj, fig

    run_btn.click(
        fn=process_and_plot,
        inputs=inp,
        outputs=[out_tool, out_score, out_args, out_result, plot_output]
    )

    # Load the initial plot when the app starts
    demo.load(fn=lambda: plot_tool_world(None), inputs=None, outputs=plot_output)

demo.launch()