Spaces:
Running
Running
File size: 20,417 Bytes
dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 223bfba dbbd401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# ==============================================================================
# Tool World: Advanced Prototype (Hugging Face Space Version)
# ==============================================================================
#
# This script has been updated to run as a Hugging Face Space.
#
# Key Upgrades from the original script:
# 1. **Hugging Face Model Integration**: Uses the fast 'Qwen/Qwen2-0.5B-Instruct'
# model from the Hugging Face Hub for argument extraction.
# 2. **Simplified Setup**: This model does not require a Hugging Face token.
# 3. **Standard Dependencies**: All dependencies are managed via a
# `requirements.txt` file.
#
# ==============================================================================
# ------------------------------
# 1. INSTALL & IMPORT PACKAGES
# ------------------------------
import numpy as np
import umap
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import matplotlib.pyplot as plt
import json
import os
from datetime import datetime, timedelta
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# ------------------------------
# 2. CONFIGURE & LOAD MODELS
# ------------------------------
print("βοΈ Loading embedding model...")
# Using a powerful model for better semantic understanding
embedder = SentenceTransformer('all-mpnet-base-v2')
print("β
Embedding model loaded.")
# --- Configuration for Hugging Face Model-based Argument Extraction ---
try:
print("βοΈ Loading Hugging Face model for argument extraction...")
# Using the fast Qwen2 0.5B Instruct model
model_id = "Qwen/Qwen2-0.5B-Instruct"
hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
hf_model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
device_map="auto" # Automatically use GPU if available
)
USE_HF_LLM = True
# The Qwen2 tokenizer has a built-in chat template, so we don't need to set it manually.
print(f"β
Successfully loaded '{model_id}' model.")
except Exception as e:
USE_HF_LLM = False
print(f"β οΈ WARNING: Could not load the Hugging Face model. Reason: {e}")
print(" Argument extraction will be disabled.")
# ------------------------------
# 3. ADVANCED TOOL DEFINITION
# ------------------------------
class Tool:
"""
Represents a tool with structured arguments and rich descriptive data
for high-quality embedding.
"""
def __init__(self, name, description, args_schema, function, examples=None):
self.name = name
self.description = description
self.args_schema = args_schema
self.function = function
self.examples = examples or []
self.embedding = self._create_embedding()
def _create_embedding(self):
"""
Creates a rich embedding by combining the tool's name, description,
argument structure, and examples.
"""
schema_str = json.dumps(self.args_schema, indent=2)
examples_str = "\n".join([f" - Example: {ex['prompt']} -> Args: {json.dumps(ex['args'])}" for ex in self.examples])
embedding_text = (
f"Tool Name: {self.name}\n"
f"Description: {self.description}\n"
f"Argument Schema: {schema_str}\n"
f"Usage Examples:\n{examples_str}"
)
return embedder.encode(embedding_text, convert_to_tensor=True)
def __repr__(self):
return f"<Tool: {self.name}>"
# ------------------------------
# 4. TOOL IMPLEMENTATIONS
# ------------------------------
def get_weather_forecast(location: str, days: int = 1):
"""Simulates fetching a weather forecast."""
if not isinstance(location, str) or not isinstance(days, int):
return {"error": "Invalid argument types. 'location' must be a string and 'days' an integer."}
weather_conditions = ["Sunny", "Cloudy", "Rainy", "Windy", "Snowy"]
response = {"location": location, "forecast": []}
for i in range(days):
date = (datetime.now() + timedelta(days=i)).strftime('%Y-%m-%d')
condition = np.random.choice(weather_conditions)
temp = np.random.randint(5, 25)
response["forecast"].append({
"date": date,
"condition": condition,
"temperature_celsius": temp
})
return response
def create_calendar_event(title: str, date: str, duration_minutes: int = 60, participants: list = None):
"""Simulates creating a calendar event."""
try:
# Check for relative terms like "tomorrow"
if 'tomorrow' in date.lower():
event_base_date = datetime.now() + timedelta(days=1)
# Try to extract time, default to 9am if not specified
try:
time_part = datetime.strptime(date, '%I:%M %p').time()
except ValueError:
try:
time_part = datetime.strptime(date, '%H:%M').time()
except ValueError:
time_part = datetime.strptime('09:00', '%H:%M').time()
event_time = event_base_date.replace(hour=time_part.hour, minute=time_part.minute, second=0, microsecond=0)
else:
event_time = datetime.strptime(date, '%Y-%m-%d %H:%M')
return {
"status": "success",
"event_created": {
"title": title,
"start_time": event_time.isoformat(),
"end_time": (event_time + timedelta(minutes=duration_minutes)).isoformat(),
"participants": participants or ["organizer"]
}
}
except ValueError:
return {"error": "Invalid date format. Please use 'YYYY-MM-DD HH:MM' or a relative term like 'tomorrow at 10:00'."}
def summarize_text(text: str, compression_level: str = 'medium'):
"""Summarizes a given text based on a compression level."""
word_count = len(text.split())
ratios = {'high': 0.2, 'medium': 0.4, 'low': 0.7}
ratio = ratios.get(compression_level, 0.4)
summary_length = int(word_count * ratio)
summary = " ".join(text.split()[:summary_length])
return {"summary": summary + "...", "original_word_count": word_count, "summary_word_count": summary_length}
def search_web(query: str, domain: str = None):
"""Simulates a web search, with an optional domain filter."""
results = [
f"Simulated result 1 for '{query}'",
f"Simulated result 2 for '{query}'",
f"Simulated result 3 for '{query}'"
]
if domain:
return {"status": f"Searching for '{query}' within '{domain}'...", "results": results}
return {"status": f"Searching for '{query}'...", "results": results}
# ------------------------------
# 5. DEFINE THE TOOLSET
# ------------------------------
tools = [
Tool(
name="weather_reporter",
description="Provides the weather forecast for a specific location for a given number of days.",
args_schema={
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, e.g., 'San Francisco, CA'"},
"days": {"type": "integer", "description": "The number of days to forecast", "default": 1}
},
"required": ["location"]
},
function=get_weather_forecast,
examples=[
{"prompt": "what's the weather like in London for the next 3 days", "args": {"location": "London", "days": 3}},
{"prompt": "forecast for New York tomorrow", "args": {"location": "New York", "days": 1}}
]
),
Tool(
name="calendar_creator",
description="Creates a new event in the user's calendar.",
args_schema={
"type": "object",
"properties": {
"title": {"type": "string", "description": "The title of the calendar event"},
"date": {"type": "string", "description": "The start date and time in 'YYYY-MM-DD HH:MM' format. Handles relative terms like 'tomorrow at 10:30 am'."},
"duration_minutes": {"type": "integer", "description": "The duration of the event in minutes", "default": 60},
"participants": {"type": "array", "items": {"type": "string"}, "description": "List of email addresses of participants"}
},
"required": ["title", "date"]
},
function=create_calendar_event,
examples=[
{"prompt": "Schedule a 'Project Sync' for tomorrow at 3pm with bob@example.com", "args": {"title": "Project Sync", "date": (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d 15:00'), "participants": ["bob@example.com"]}},
{"prompt": "new event: Dentist appointment on 2025-12-20 at 10:00 for 45 mins", "args": {"title": "Dentist appointment", "date": "2025-12-20 10:00", "duration_minutes": 45}}
]
),
Tool(
name="text_summarizer",
description="Summarizes a long piece of text. Can be set to high, medium, or low compression.",
args_schema={
"type": "object",
"properties": {
"text": {"type": "string", "description": "The text to be summarized."},
"compression_level": {"type": "string", "enum": ["high", "medium", "low"], "description": "The level of summarization.", "default": "medium"}
},
"required": ["text"]
},
function=summarize_text,
examples=[
{"prompt": "summarize this article for me, make it very short: [long text...]", "args": {"text": "[long text...]", "compression_level": "high"}}
]
),
Tool(
name="web_search",
description="Performs a web search to find information on a topic.",
args_schema={
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query."},
"domain": {"type": "string", "description": "Optional: a specific website domain to search within (e.g., 'wikipedia.org')."}
},
"required": ["query"]
},
function=search_web,
examples=[
{"prompt": "who invented the light bulb", "args": {"query": "who invented the light bulb"}},
{"prompt": "search for 'transformer models' on arxiv.org", "args": {"query": "transformer models", "domain": "arxiv.org"}}
]
)
]
print(f"β
{len(tools)} tools defined and embedded.")
# ------------------------------
# 6. CORE LOGIC: TOOL SELECTION & ARGUMENT EXTRACTION
# ------------------------------
def find_best_tool(user_intent: str):
"""Finds the most semantically similar tool for a user's intent."""
intent_embedding = embedder.encode(user_intent, convert_to_tensor=True)
# Move tool embeddings to the same device as the intent embedding
tool_embeddings = [tool.embedding.to(intent_embedding.device) for tool in tools]
similarities = [util.pytorch_cos_sim(intent_embedding, tool_emb).item() for tool_emb in tool_embeddings]
best_index = int(np.argmax(similarities))
best_tool = tools[best_index]
best_score = similarities[best_index]
return best_tool, best_score, similarities
def extract_arguments_hf(user_prompt: str, tool: Tool):
"""
Uses a local Hugging Face model to extract structured arguments.
"""
system_prompt = f"""
You are an expert at extracting structured data from natural language.
Your task is to analyze the user's prompt and extract the arguments required to call the tool: '{tool.name}'.
You must adhere to the following JSON schema for the arguments:
{json.dumps(tool.args_schema, indent=2)}
- If a value is not present in the prompt for a non-required field, omit it from the JSON.
- If a required value is missing, return a JSON object with an "error" key explaining what is missing.
- Today's date is {datetime.now().strftime('%Y-%m-%d')}. If the user says "tomorrow", use {(datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')}.
- Respond ONLY with a valid JSON object. Do not include any other text, explanation, or markdown code blocks.
"""
# Qwen2 instruction-following format
chat = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
try:
# The tokenizer for Qwen2 has a built-in chat template.
prompt = hf_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = hf_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(hf_model.device)
# Generate with the model
outputs = hf_model.generate(input_ids=inputs, max_new_tokens=256, do_sample=False)
decoded_output = hf_tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
# Clean the response to find the JSON object
json_str = decoded_output.strip()
# Find the first '{' and the last '}' to get the JSON part
json_start = json_str.find('{')
json_end = json_str.rfind('}')
if json_start != -1 and json_end != -1:
json_str = json_str[json_start : json_end + 1]
return json.loads(json_str)
else:
raise json.JSONDecodeError("No JSON object found in the model output.", json_str, 0)
except Exception as e:
print(f"Error during HF model inference or JSON parsing: {e}")
return {"error": f"Failed to extract arguments with the local LLM. Details: {str(e)}"}
def execute_tool(user_prompt: str):
"""The main pipeline: Find tool, extract args, execute."""
selected_tool, score, _ = find_best_tool(user_prompt)
if USE_HF_LLM:
print(f"βοΈ Selected Tool: {selected_tool.name}. Extracting arguments with Qwen2...")
extracted_args = extract_arguments_hf(user_prompt, selected_tool)
else:
# Fallback if the model failed to load
extracted_args = {"error": "Argument extraction is disabled because the Hugging Face model could not be loaded."}
if 'error' in extracted_args:
print(f"β Argument extraction failed: {extracted_args['error']}")
# Ensure the final output string is valid JSON
final_output_str = json.dumps({
"error": "Execution failed during argument extraction.",
"details": extracted_args.get('error', 'Unknown extraction error')
})
return (
user_prompt,
selected_tool.name,
f"{score:.3f}",
json.dumps(extracted_args, indent=2),
final_output_str
)
print(f"β
Arguments extracted: {json.dumps(extracted_args, indent=2)}")
try:
print(f"π Executing tool function: {selected_tool.name}...")
output = selected_tool.function(**extracted_args)
print(f"β
Execution complete.")
output_str = json.dumps(output, indent=2)
except Exception as e:
print(f"β Tool execution failed: {e}")
output_str = f'{{"error": "Tool execution failed", "details": "{str(e)}"}}'
return (
user_prompt,
selected_tool.name,
f"{score:.3f}",
json.dumps(extracted_args, indent=2),
output_str
)
# ------------------------------
# 7. VISUALIZATION
# ------------------------------
def plot_tool_world(user_intent=None):
"""Generates a 2D UMAP plot of the tool latent space."""
tool_vectors = [tool.embedding.cpu().numpy() for tool in tools]
labels = [tool.name for tool in tools]
all_vectors = tool_vectors
if user_intent and user_intent.strip():
intent_vector = embedder.encode(user_intent, convert_to_tensor=True).cpu().numpy()
all_vectors.append(intent_vector)
labels.append("Your Intent")
# UMAP requires at least 2 neighbors
n_neighbors = min(len(all_vectors) - 1, 5)
if n_neighbors < 1:
n_neighbors = 1
reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=0.3, metric='cosine', random_state=42)
# UMAP fit_transform requires at least 2 samples
if len(all_vectors) < 2:
# Create a dummy plot if there's not enough data
fig, ax = plt.subplots(figsize=(10, 7))
ax.text(0.5, 0.5, "Not enough data to create a plot.", ha='center', va='center')
return fig
reduced_vectors = reducer.fit_transform(all_vectors)
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 7))
for i, label in enumerate(labels):
x, y = reduced_vectors[i]
if label == "Your Intent":
ax.scatter(x, y, color='red', s=150, zorder=5, label=label, marker='*')
ax.text(x, y + 0.05, label, fontsize=12, ha='center', color='red', weight='bold')
else:
ax.scatter(x, y, s=100, alpha=0.8, label=label)
ax.text(x, y + 0.05, label, fontsize=10, ha='center')
ax.set_title("Tool World: Latent Space Map", fontsize=16)
ax.set_xlabel("UMAP Dimension 1", fontsize=12)
ax.set_ylabel("UMAP Dimension 2", fontsize=12)
ax.grid(True)
handles, labels_legend = ax.get_legend_handles_labels()
by_label = dict(zip(labels_legend, handles))
ax.legend(by_label.values(), by_label.keys())
plt.tight_layout()
return fig
# ------------------------------
# 8. GRADIO INTERFACE
# ------------------------------
print("π Launching Gradio interface...")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π οΈ Tool World: Advanced Prototype (Hugging Face Version)")
gr.Markdown(
"Enter a natural language command. The system will select the best tool, "
"extract structured arguments with **Qwen/Qwen2-0.5B-Instruct**, and execute it."
)
with gr.Row():
with gr.Column(scale=1):
inp = gr.Textbox(
label="Your Intent",
placeholder="e.g., What's the weather in Paris for 2 days?",
lines=3
)
run_btn = gr.Button("Invoke Tool", variant="primary")
gr.Markdown("---")
gr.Markdown("### Examples")
gr.Examples(
examples=[
"Schedule a 'Team Meeting' for tomorrow at 10:30 am",
"What is the weather forecast in Tokyo for the next 5 days?",
"search for the latest news on generative AI on reuters.com",
"Please give me a very short summary of this text: The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840."
],
inputs=inp
)
with gr.Column(scale=2):
gr.Markdown("### Invocation Details")
with gr.Row():
out_tool = gr.Textbox(label="Selected Tool", interactive=False)
out_score = gr.Textbox(label="Similarity Score", interactive=False)
out_args = gr.JSON(label="Extracted Arguments")
out_result = gr.JSON(label="Tool Execution Output")
with gr.Row():
gr.Markdown("---")
gr.Markdown("### Latent Space Visualization")
plot_output = gr.Plot(label="Tool World Map")
def process_and_plot(user_prompt):
if not user_prompt or not user_prompt.strip():
# Return empty state and the default plot
return "", "", {}, {}, plot_tool_world()
prompt, tool_name, score, args_json, result_json = execute_tool(user_prompt)
fig = plot_tool_world(user_prompt)
# Safely load JSON strings into objects for the UI
try:
args_obj = json.loads(args_json)
except (json.JSONDecodeError, TypeError):
args_obj = {"error": "Invalid JSON in arguments", "raw": args_json}
try:
result_obj = json.loads(result_json)
except (json.JSONDecodeError, TypeError):
result_obj = {"error": "Invalid JSON in result", "raw": result_json}
return tool_name, score, args_obj, result_obj, fig
run_btn.click(
fn=process_and_plot,
inputs=inp,
outputs=[out_tool, out_score, out_args, out_result, plot_output]
)
# Load the initial plot when the app starts
demo.load(fn=lambda: plot_tool_world(None), inputs=None, outputs=plot_output)
demo.launch() |