# ============================================================================== # Tool World: Advanced Prototype (Hugging Face Space Version) # ============================================================================== # # This script has been updated to run as a Hugging Face Space. # # Key Upgrades from the original script: # 1. **Hugging Face Model Integration**: Uses the fast 'Qwen/Qwen2-0.5B-Instruct' # model from the Hugging Face Hub for argument extraction. # 2. **Simplified Setup**: This model does not require a Hugging Face token. # 3. **Standard Dependencies**: All dependencies are managed via a # `requirements.txt` file. # # ============================================================================== # ------------------------------ # 1. INSTALL & IMPORT PACKAGES # ------------------------------ import numpy as np import umap import gradio as gr from sentence_transformers import SentenceTransformer, util import matplotlib.pyplot as plt import json import os from datetime import datetime, timedelta import torch from transformers import AutoTokenizer, AutoModelForCausalLM # ------------------------------ # 2. CONFIGURE & LOAD MODELS # ------------------------------ print("⚙️ Loading embedding model...") # Using a powerful model for better semantic understanding embedder = SentenceTransformer('all-mpnet-base-v2') print("✅ Embedding model loaded.") # --- Configuration for Hugging Face Model-based Argument Extraction --- try: print("⚙️ Loading Hugging Face model for argument extraction...") # Using the fast Qwen2 0.5B Instruct model model_id = "Qwen/Qwen2-0.5B-Instruct" hf_tokenizer = AutoTokenizer.from_pretrained(model_id) hf_model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency device_map="auto" # Automatically use GPU if available ) USE_HF_LLM = True # The Qwen2 tokenizer has a built-in chat template, so we don't need to set it manually. print(f"✅ Successfully loaded '{model_id}' model.") except Exception as e: USE_HF_LLM = False print(f"⚠️ WARNING: Could not load the Hugging Face model. Reason: {e}") print(" Argument extraction will be disabled.") # ------------------------------ # 3. ADVANCED TOOL DEFINITION # ------------------------------ class Tool: """ Represents a tool with structured arguments and rich descriptive data for high-quality embedding. """ def __init__(self, name, description, args_schema, function, examples=None): self.name = name self.description = description self.args_schema = args_schema self.function = function self.examples = examples or [] self.embedding = self._create_embedding() def _create_embedding(self): """ Creates a rich embedding by combining the tool's name, description, argument structure, and examples. """ schema_str = json.dumps(self.args_schema, indent=2) examples_str = "\n".join([f" - Example: {ex['prompt']} -> Args: {json.dumps(ex['args'])}" for ex in self.examples]) embedding_text = ( f"Tool Name: {self.name}\n" f"Description: {self.description}\n" f"Argument Schema: {schema_str}\n" f"Usage Examples:\n{examples_str}" ) return embedder.encode(embedding_text, convert_to_tensor=True) def __repr__(self): return f"" # ------------------------------ # 4. TOOL IMPLEMENTATIONS # ------------------------------ def get_weather_forecast(location: str, days: int = 1): """Simulates fetching a weather forecast.""" if not isinstance(location, str) or not isinstance(days, int): return {"error": "Invalid argument types. 'location' must be a string and 'days' an integer."} weather_conditions = ["Sunny", "Cloudy", "Rainy", "Windy", "Snowy"] response = {"location": location, "forecast": []} for i in range(days): date = (datetime.now() + timedelta(days=i)).strftime('%Y-%m-%d') condition = np.random.choice(weather_conditions) temp = np.random.randint(5, 25) response["forecast"].append({ "date": date, "condition": condition, "temperature_celsius": temp }) return response def create_calendar_event(title: str, date: str, duration_minutes: int = 60, participants: list = None): """Simulates creating a calendar event.""" try: # Check for relative terms like "tomorrow" if 'tomorrow' in date.lower(): event_base_date = datetime.now() + timedelta(days=1) # Try to extract time, default to 9am if not specified try: time_part = datetime.strptime(date, '%I:%M %p').time() except ValueError: try: time_part = datetime.strptime(date, '%H:%M').time() except ValueError: time_part = datetime.strptime('09:00', '%H:%M').time() event_time = event_base_date.replace(hour=time_part.hour, minute=time_part.minute, second=0, microsecond=0) else: event_time = datetime.strptime(date, '%Y-%m-%d %H:%M') return { "status": "success", "event_created": { "title": title, "start_time": event_time.isoformat(), "end_time": (event_time + timedelta(minutes=duration_minutes)).isoformat(), "participants": participants or ["organizer"] } } except ValueError: return {"error": "Invalid date format. Please use 'YYYY-MM-DD HH:MM' or a relative term like 'tomorrow at 10:00'."} def summarize_text(text: str, compression_level: str = 'medium'): """Summarizes a given text based on a compression level.""" word_count = len(text.split()) ratios = {'high': 0.2, 'medium': 0.4, 'low': 0.7} ratio = ratios.get(compression_level, 0.4) summary_length = int(word_count * ratio) summary = " ".join(text.split()[:summary_length]) return {"summary": summary + "...", "original_word_count": word_count, "summary_word_count": summary_length} def search_web(query: str, domain: str = None): """Simulates a web search, with an optional domain filter.""" results = [ f"Simulated result 1 for '{query}'", f"Simulated result 2 for '{query}'", f"Simulated result 3 for '{query}'" ] if domain: return {"status": f"Searching for '{query}' within '{domain}'...", "results": results} return {"status": f"Searching for '{query}'...", "results": results} # ------------------------------ # 5. DEFINE THE TOOLSET # ------------------------------ tools = [ Tool( name="weather_reporter", description="Provides the weather forecast for a specific location for a given number of days.", args_schema={ "type": "object", "properties": { "location": {"type": "string", "description": "The city and state, e.g., 'San Francisco, CA'"}, "days": {"type": "integer", "description": "The number of days to forecast", "default": 1} }, "required": ["location"] }, function=get_weather_forecast, examples=[ {"prompt": "what's the weather like in London for the next 3 days", "args": {"location": "London", "days": 3}}, {"prompt": "forecast for New York tomorrow", "args": {"location": "New York", "days": 1}} ] ), Tool( name="calendar_creator", description="Creates a new event in the user's calendar.", args_schema={ "type": "object", "properties": { "title": {"type": "string", "description": "The title of the calendar event"}, "date": {"type": "string", "description": "The start date and time in 'YYYY-MM-DD HH:MM' format. Handles relative terms like 'tomorrow at 10:30 am'."}, "duration_minutes": {"type": "integer", "description": "The duration of the event in minutes", "default": 60}, "participants": {"type": "array", "items": {"type": "string"}, "description": "List of email addresses of participants"} }, "required": ["title", "date"] }, function=create_calendar_event, examples=[ {"prompt": "Schedule a 'Project Sync' for tomorrow at 3pm with bob@example.com", "args": {"title": "Project Sync", "date": (datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d 15:00'), "participants": ["bob@example.com"]}}, {"prompt": "new event: Dentist appointment on 2025-12-20 at 10:00 for 45 mins", "args": {"title": "Dentist appointment", "date": "2025-12-20 10:00", "duration_minutes": 45}} ] ), Tool( name="text_summarizer", description="Summarizes a long piece of text. Can be set to high, medium, or low compression.", args_schema={ "type": "object", "properties": { "text": {"type": "string", "description": "The text to be summarized."}, "compression_level": {"type": "string", "enum": ["high", "medium", "low"], "description": "The level of summarization.", "default": "medium"} }, "required": ["text"] }, function=summarize_text, examples=[ {"prompt": "summarize this article for me, make it very short: [long text...]", "args": {"text": "[long text...]", "compression_level": "high"}} ] ), Tool( name="web_search", description="Performs a web search to find information on a topic.", args_schema={ "type": "object", "properties": { "query": {"type": "string", "description": "The search query."}, "domain": {"type": "string", "description": "Optional: a specific website domain to search within (e.g., 'wikipedia.org')."} }, "required": ["query"] }, function=search_web, examples=[ {"prompt": "who invented the light bulb", "args": {"query": "who invented the light bulb"}}, {"prompt": "search for 'transformer models' on arxiv.org", "args": {"query": "transformer models", "domain": "arxiv.org"}} ] ) ] print(f"✅ {len(tools)} tools defined and embedded.") # ------------------------------ # 6. CORE LOGIC: TOOL SELECTION & ARGUMENT EXTRACTION # ------------------------------ def find_best_tool(user_intent: str): """Finds the most semantically similar tool for a user's intent.""" intent_embedding = embedder.encode(user_intent, convert_to_tensor=True) # Move tool embeddings to the same device as the intent embedding tool_embeddings = [tool.embedding.to(intent_embedding.device) for tool in tools] similarities = [util.pytorch_cos_sim(intent_embedding, tool_emb).item() for tool_emb in tool_embeddings] best_index = int(np.argmax(similarities)) best_tool = tools[best_index] best_score = similarities[best_index] return best_tool, best_score, similarities def extract_arguments_hf(user_prompt: str, tool: Tool): """ Uses a local Hugging Face model to extract structured arguments. """ system_prompt = f""" You are an expert at extracting structured data from natural language. Your task is to analyze the user's prompt and extract the arguments required to call the tool: '{tool.name}'. You must adhere to the following JSON schema for the arguments: {json.dumps(tool.args_schema, indent=2)} - If a value is not present in the prompt for a non-required field, omit it from the JSON. - If a required value is missing, return a JSON object with an "error" key explaining what is missing. - Today's date is {datetime.now().strftime('%Y-%m-%d')}. If the user says "tomorrow", use {(datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')}. - Respond ONLY with a valid JSON object. Do not include any other text, explanation, or markdown code blocks. """ # Qwen2 instruction-following format chat = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] try: # The tokenizer for Qwen2 has a built-in chat template. prompt = hf_tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = hf_tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(hf_model.device) # Generate with the model outputs = hf_model.generate(input_ids=inputs, max_new_tokens=256, do_sample=False) decoded_output = hf_tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) # Clean the response to find the JSON object json_str = decoded_output.strip() # Find the first '{' and the last '}' to get the JSON part json_start = json_str.find('{') json_end = json_str.rfind('}') if json_start != -1 and json_end != -1: json_str = json_str[json_start : json_end + 1] return json.loads(json_str) else: raise json.JSONDecodeError("No JSON object found in the model output.", json_str, 0) except Exception as e: print(f"Error during HF model inference or JSON parsing: {e}") return {"error": f"Failed to extract arguments with the local LLM. Details: {str(e)}"} def execute_tool(user_prompt: str): """The main pipeline: Find tool, extract args, execute.""" selected_tool, score, _ = find_best_tool(user_prompt) if USE_HF_LLM: print(f"⚙️ Selected Tool: {selected_tool.name}. Extracting arguments with Qwen2...") extracted_args = extract_arguments_hf(user_prompt, selected_tool) else: # Fallback if the model failed to load extracted_args = {"error": "Argument extraction is disabled because the Hugging Face model could not be loaded."} if 'error' in extracted_args: print(f"❌ Argument extraction failed: {extracted_args['error']}") # Ensure the final output string is valid JSON final_output_str = json.dumps({ "error": "Execution failed during argument extraction.", "details": extracted_args.get('error', 'Unknown extraction error') }) return ( user_prompt, selected_tool.name, f"{score:.3f}", json.dumps(extracted_args, indent=2), final_output_str ) print(f"✅ Arguments extracted: {json.dumps(extracted_args, indent=2)}") try: print(f"🚀 Executing tool function: {selected_tool.name}...") output = selected_tool.function(**extracted_args) print(f"✅ Execution complete.") output_str = json.dumps(output, indent=2) except Exception as e: print(f"❌ Tool execution failed: {e}") output_str = f'{{"error": "Tool execution failed", "details": "{str(e)}"}}' return ( user_prompt, selected_tool.name, f"{score:.3f}", json.dumps(extracted_args, indent=2), output_str ) # ------------------------------ # 7. VISUALIZATION # ------------------------------ def plot_tool_world(user_intent=None): """Generates a 2D UMAP plot of the tool latent space.""" tool_vectors = [tool.embedding.cpu().numpy() for tool in tools] labels = [tool.name for tool in tools] all_vectors = tool_vectors if user_intent and user_intent.strip(): intent_vector = embedder.encode(user_intent, convert_to_tensor=True).cpu().numpy() all_vectors.append(intent_vector) labels.append("Your Intent") # UMAP requires at least 2 neighbors n_neighbors = min(len(all_vectors) - 1, 5) if n_neighbors < 1: n_neighbors = 1 reducer = umap.UMAP(n_neighbors=n_neighbors, min_dist=0.3, metric='cosine', random_state=42) # UMAP fit_transform requires at least 2 samples if len(all_vectors) < 2: # Create a dummy plot if there's not enough data fig, ax = plt.subplots(figsize=(10, 7)) ax.text(0.5, 0.5, "Not enough data to create a plot.", ha='center', va='center') return fig reduced_vectors = reducer.fit_transform(all_vectors) plt.style.use('seaborn-v0_8-whitegrid') fig, ax = plt.subplots(figsize=(10, 7)) for i, label in enumerate(labels): x, y = reduced_vectors[i] if label == "Your Intent": ax.scatter(x, y, color='red', s=150, zorder=5, label=label, marker='*') ax.text(x, y + 0.05, label, fontsize=12, ha='center', color='red', weight='bold') else: ax.scatter(x, y, s=100, alpha=0.8, label=label) ax.text(x, y + 0.05, label, fontsize=10, ha='center') ax.set_title("Tool World: Latent Space Map", fontsize=16) ax.set_xlabel("UMAP Dimension 1", fontsize=12) ax.set_ylabel("UMAP Dimension 2", fontsize=12) ax.grid(True) handles, labels_legend = ax.get_legend_handles_labels() by_label = dict(zip(labels_legend, handles)) ax.legend(by_label.values(), by_label.keys()) plt.tight_layout() return fig # ------------------------------ # 8. GRADIO INTERFACE # ------------------------------ print("🚀 Launching Gradio interface...") with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🛠️ Tool World: Advanced Prototype (Hugging Face Version)") gr.Markdown( "Enter a natural language command. The system will select the best tool, " "extract structured arguments with **Qwen/Qwen2-0.5B-Instruct**, and execute it." ) with gr.Row(): with gr.Column(scale=1): inp = gr.Textbox( label="Your Intent", placeholder="e.g., What's the weather in Paris for 2 days?", lines=3 ) run_btn = gr.Button("Invoke Tool", variant="primary") gr.Markdown("---") gr.Markdown("### Examples") gr.Examples( examples=[ "Schedule a 'Team Meeting' for tomorrow at 10:30 am", "What is the weather forecast in Tokyo for the next 5 days?", "search for the latest news on generative AI on reuters.com", "Please give me a very short summary of this text: The Industrial Revolution was the transition to new manufacturing processes in Europe and the United States, in the period from about 1760 to sometime between 1820 and 1840." ], inputs=inp ) with gr.Column(scale=2): gr.Markdown("### Invocation Details") with gr.Row(): out_tool = gr.Textbox(label="Selected Tool", interactive=False) out_score = gr.Textbox(label="Similarity Score", interactive=False) out_args = gr.JSON(label="Extracted Arguments") out_result = gr.JSON(label="Tool Execution Output") with gr.Row(): gr.Markdown("---") gr.Markdown("### Latent Space Visualization") plot_output = gr.Plot(label="Tool World Map") def process_and_plot(user_prompt): if not user_prompt or not user_prompt.strip(): # Return empty state and the default plot return "", "", {}, {}, plot_tool_world() prompt, tool_name, score, args_json, result_json = execute_tool(user_prompt) fig = plot_tool_world(user_prompt) # Safely load JSON strings into objects for the UI try: args_obj = json.loads(args_json) except (json.JSONDecodeError, TypeError): args_obj = {"error": "Invalid JSON in arguments", "raw": args_json} try: result_obj = json.loads(result_json) except (json.JSONDecodeError, TypeError): result_obj = {"error": "Invalid JSON in result", "raw": result_json} return tool_name, score, args_obj, result_obj, fig run_btn.click( fn=process_and_plot, inputs=inp, outputs=[out_tool, out_score, out_args, out_result, plot_output] ) # Load the initial plot when the app starts demo.load(fn=lambda: plot_tool_world(None), inputs=None, outputs=plot_output) demo.launch()