File size: 21,891 Bytes
f3533df 2d6328c f3533df 2d6328c f3533df ad49ab3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import gradio as gr
import torch
import unicodedata
import re
import numpy as np
from pathlib import Path
from transformers import AutoTokenizer, AutoModel
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.preprocessing import normalize as sk_normalize
import chromadb
import joblib
import pickle
import scipy.sparse
import textwrap
import os
import json # Για το διάβασμα του JSON κατά το setup
import tqdm.auto as tq # Για progress bars κατά το setup
# --------------------------- CONFIG για ChatbotVol107 -----------------------------------
# --- Ρυθμίσεις Μοντέλου και Βάσης Δεδομένων ---
MODEL_NAME = "nlpaueb/bert-base-greek-uncased-v1"
PERSISTENT_STORAGE_ROOT = Path("/data") # Για Hugging Face Spaces Persistent Storage
DB_DIR_APP = PERSISTENT_STORAGE_ROOT / "chroma_db_ChatbotVol107"
COL_NAME = "collection_chatbotvol107"
ASSETS_DIR_APP = PERSISTENT_STORAGE_ROOT / "assets_ChatbotVol107"
DATA_PATH_FOR_SETUP = "./dataset14.json"
# --- Ρυθμίσεις για Google Cloud Storage για τα PDF links ---
GCS_BUCKET_NAME = "chatbotthesisihu" # Το δικό σας GCS Bucket Name
GCS_PUBLIC_URL_PREFIX = f"https://storage.googleapis.com/{GCS_BUCKET_NAME}/"
# -------------------------------------------------------------
# --- Παράμετροι Αναζήτησης και Μοντέλου ---
CHUNK_SIZE = 512
CHUNK_OVERLAP = 40
BATCH_EMB = 32 # Για τη δημιουργία των embeddings κατά το setup
ALPHA_BASE = 0.2 # Βέλτιστη τιμή alpha που βρήκατε
ALPHA_LONGQ = 0.35# Βέλτιστη τιμή alpha για μεγάλα queries που βρήκατε
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running ChatbotVol107 on device: {DEVICE}")
print(f"Using model: {MODEL_NAME}")
# === ΛΟΓΙΚΗ ΔΗΜΙΟΥΡΓΙΑΣ ΒΑΣΗΣ ΚΑΙ ASSETS (Αν δεν υπάρχουν) ===
def setup_database_and_assets():
print("Checking if database and assets need to be created...")
# Έλεγχος ύπαρξης βασικών αρχείων για να αποφασιστεί αν το setup χρειάζεται
# Ο έλεγχος col.count()
run_setup = True
if DB_DIR_APP.exists() and ASSETS_DIR_APP.exists() and (ASSETS_DIR_APP / "ids.pkl").exists():
try:
client_check = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
collection_check = client_check.get_collection(name=COL_NAME)
if collection_check.count() > 0:
print("✓ Database and assets appear to exist and collection is populated. Skipping setup.")
run_setup = False
else:
print("Collection exists but is empty. Proceeding with setup.")
if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση υπάρχει αλλά είναι ελλιπής/άδεια
import shutil
print(f"Attempting to clean up existing empty/corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
except Exception as e_check: # Π.χ. η συλλογή δεν υπάρχει
print(f"Database or collection check failed (Error: {e_check}). Proceeding with setup.")
if DB_DIR_APP.exists(): # Καθαρισμός αν η βάση φαίνεται κατεστραμμένη
import shutil
print(f"Attempting to clean up existing corrupt DB directory: {DB_DIR_APP}")
shutil.rmtree(DB_DIR_APP)
if not run_setup:
return True # Το setup δεν χρειάζεται
print(f"!Database/Assets not found or incomplete. Starting setup process.")
print(f"This will take a very long time, especially on the first run !")
ASSETS_DIR_APP.mkdir(parents=True, exist_ok=True)
DB_DIR_APP.mkdir(parents=True, exist_ok=True)
# --- Helper συναρτήσεις για το setup (τοπικές σε αυτή τη συνάρτηση) ---
def _strip_acc_setup(s:str)->str: return ''.join(ch for ch in unicodedata.normalize('NFD', s) if not unicodedata.combining(ch))
_STOP_SETUP = {"σχετικο","σχετικά","με","και"}
def _preprocess_setup(txt:str)->str:
txt = _strip_acc_setup(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in _STOP_SETUP)
def _chunk_text_setup(text, tokenizer_setup):
token_ids = tokenizer_setup.encode(text, add_special_tokens=False)
if len(token_ids) <= (CHUNK_SIZE - 2): return [text]
ids_with_special_tokens = tokenizer_setup(text, truncation=False, padding=False)["input_ids"]
effective_chunk_size = CHUNK_SIZE
step = effective_chunk_size - CHUNK_OVERLAP
chunks = []
for i in range(0, len(ids_with_special_tokens), step):
current_chunk_ids = ids_with_special_tokens[i:i+effective_chunk_size]
if not current_chunk_ids: break
if len(chunks) > 0 and len(current_chunk_ids) < CHUNK_OVERLAP:
if len(ids_with_special_tokens) - i < effective_chunk_size: pass
else: break
decoded_chunk = tokenizer_setup.decode(current_chunk_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True).strip()
if decoded_chunk: chunks.append(decoded_chunk)
return chunks if chunks else [text]
def _cls_embed_setup(texts, tokenizer_setup, model_setup, bs=BATCH_EMB):
out_embeddings = []
for i in tq.tqdm(range(0, len(texts), bs), desc="Embedding texts for DB setup"):
enc = tokenizer_setup(texts[i:i+bs], padding=True, truncation=True, max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
with torch.no_grad():
model_output = model_setup(**enc)
last_hidden_state = model_output.last_hidden_state
cls_embedding = last_hidden_state[:, 0, :]
cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
out_embeddings.append(cls_normalized.cpu())
return torch.cat(out_embeddings).numpy()
# --- Κύρια Λογική του Setup ---
print(f"⏳ (Setup) Loading Model ({MODEL_NAME}) and Tokenizer...")
tokenizer_setup = AutoTokenizer.from_pretrained(MODEL_NAME)
model_setup = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
print("✓ (Setup) Model and Tokenizer loaded.")
print(f"⏳ (Setup) Reading & chunking JSON data from {DATA_PATH_FOR_SETUP}...")
if not Path(DATA_PATH_FOR_SETUP).exists():
print(f"!!! CRITICAL SETUP ERROR: Dataset file {DATA_PATH_FOR_SETUP} not found in the Space repo! Please upload it.")
return False
with open(DATA_PATH_FOR_SETUP, encoding="utf-8") as f: docs_json = json.load(f)
raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup = [], [], [], []
for d_setup in tq.tqdm(docs_json, desc="(Setup) Processing documents"):
doc_text = d_setup.get("text")
if not doc_text: continue
chunked_doc_texts = _chunk_text_setup(doc_text, tokenizer_setup)
if not chunked_doc_texts: continue
for idx, chunk in enumerate(chunked_doc_texts):
if not chunk.strip(): continue
raw_chunks_setup.append(chunk)
pre_chunks_setup.append(_preprocess_setup(chunk))
metas_setup.append({"id": d_setup["id"], "title": d_setup["title"], "url": d_setup["url"], "chunk_num": idx+1, "total_chunks": len(chunked_doc_texts)})
ids_list_setup.append(f'{d_setup["id"]}_c{idx+1}')
print(f" → (Setup) Total chunks created: {len(raw_chunks_setup):,}")
if not raw_chunks_setup:
print("!!! CRITICAL SETUP ERROR: No chunks were created from the dataset.")
return False
print("⏳ (Setup) Building lexical matrices (TF-IDF)...")
char_vec_setup = HashingVectorizer(analyzer="char_wb", ngram_range=(2,5), n_features=2**20, norm=None, alternate_sign=False, binary=True)
word_vec_setup = HashingVectorizer(analyzer="word", ngram_range=(1,2), n_features=2**19, norm=None, alternate_sign=False, binary=True)
X_char_setup = sk_normalize(char_vec_setup.fit_transform(pre_chunks_setup))
X_word_setup = sk_normalize(word_vec_setup.fit_transform(pre_chunks_setup))
print("✓ (Setup) Lexical matrices built.")
print(f"⏳ (Setup) Setting up ChromaDB client at {DB_DIR_APP}...")
client_setup = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
print(f" → (Setup) Creating collection: {COL_NAME}")
try: # Προσπάθεια διαγραφής αν υπάρχει για σίγουρη νέα δημιουργία
client_setup.delete_collection(COL_NAME)
except: pass
col_setup = client_setup.get_or_create_collection(COL_NAME, metadata={"hnsw:space":"cosine"})
print("⏳ (Setup) Encoding chunks and streaming to ChromaDB...")
for start_idx in tq.tqdm(range(0, len(pre_chunks_setup), BATCH_EMB), desc="(Setup) Adding to ChromaDB"):
end_idx = min(start_idx + BATCH_EMB, len(pre_chunks_setup))
batch_pre_chunks = pre_chunks_setup[start_idx:end_idx]
batch_ids = ids_list_setup[start_idx:end_idx]
batch_metadatas = metas_setup[start_idx:end_idx]
if not batch_pre_chunks: continue
batch_embeddings = _cls_embed_setup(batch_pre_chunks, tokenizer_setup, model_setup, bs=BATCH_EMB)
col_setup.add(embeddings=batch_embeddings.tolist(), documents=batch_pre_chunks, metadatas=batch_metadatas, ids=batch_ids)
final_count = col_setup.count()
print(f"✓ (Setup) Index built and stored in ChromaDB. Final count: {final_count}")
if final_count != len(ids_list_setup):
print(f"!!! WARNING (Setup): Mismatch after setup! Expected {len(ids_list_setup)} items, got {final_count}")
# return False # Αποφασίζουμε αν αυτό είναι κρίσιμο σφάλμα ή απλή προειδοποίηση
print(f"💾 (Setup) Saving assets to {ASSETS_DIR_APP}...")
joblib.dump(char_vec_setup, ASSETS_DIR_APP / "char_vectorizer.joblib")
joblib.dump(word_vec_setup, ASSETS_DIR_APP / "word_vectorizer.joblib")
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_char_sparse.npz", X_char_setup)
scipy.sparse.save_npz(ASSETS_DIR_APP / "X_word_sparse.npz", X_word_setup)
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "wb") as f: pickle.dump(pre_chunks_setup, f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "wb") as f: pickle.dump(raw_chunks_setup, f)
with open(ASSETS_DIR_APP / "ids.pkl", "wb") as f: pickle.dump(ids_list_setup, f)
with open(ASSETS_DIR_APP / "metas.pkl", "wb") as f: pickle.dump(metas_setup, f)
print("✓ (Setup) Assets saved.")
del tokenizer_setup, model_setup, docs_json, raw_chunks_setup, pre_chunks_setup, metas_setup, ids_list_setup
del char_vec_setup, word_vec_setup, X_char_setup, X_word_setup, client_setup, col_setup
if DEVICE == "cuda":
torch.cuda.empty_cache()
print("🎉 (Setup) Database and assets creation process complete!")
return True
# ==================================================================
setup_successful = setup_database_and_assets()
# ----------------------- PRE-/POST HELPERS (για την εφαρμογή Gradio) ----------------------------
def strip_acc(s: str) -> str:
return ''.join(ch for ch in unicodedata.normalize('NFD', s)
if not unicodedata.combining(ch))
STOP = {"σχετικο", "σχετικα", "με", "και"}
def preprocess(txt: str) -> str:
txt = strip_acc(txt.lower())
txt = re.sub(r"[^a-zα-ω0-9 ]", " ", txt)
txt = re.sub(r"\s+", " ", txt).strip()
return " ".join(w for w in txt.split() if w not in STOP)
# cls_embed για την εφαρμογή Gradio (ένα query κάθε φορά)
def cls_embed(texts, tokenizer_app, model_app):
out = []
enc = tokenizer_app(texts, padding=True, truncation=True,
max_length=CHUNK_SIZE, return_tensors="pt").to(DEVICE)
with torch.no_grad():
model_output = model_app(**enc)
last_hidden_state = model_output.last_hidden_state
cls_embedding = last_hidden_state[:, 0, :]
cls_normalized = torch.nn.functional.normalize(cls_embedding, p=2, dim=1)
out.append(cls_normalized.cpu())
return torch.cat(out).numpy()
# ---------------------- LOAD MODELS & DATA (Για την εφαρμογή Gradio) --------------------
tok = None
model = None
char_vec = None
word_vec = None
X_char = None
X_word = None
pre_chunks = None
raw_chunks = None
ids = None
metas = None
col = None
if setup_successful:
print(f"⏳ Loading Model ({MODEL_NAME}) and Tokenizer for Gradio App...")
try:
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModel.from_pretrained(MODEL_NAME).to(DEVICE).eval()
print("✓ Model and tokenizer loaded for Gradio App.")
except Exception as e:
print(f"CRITICAL ERROR loading model/tokenizer for Gradio App: {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Loading TF-IDF/Assets from {ASSETS_DIR_APP} for Gradio App...")
try:
char_vec = joblib.load(ASSETS_DIR_APP / "char_vectorizer.joblib")
word_vec = joblib.load(ASSETS_DIR_APP / "word_vectorizer.joblib")
X_char = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_char_sparse.npz")
X_word = scipy.sparse.load_npz(ASSETS_DIR_APP / "X_word_sparse.npz")
with open(ASSETS_DIR_APP / "pre_chunks.pkl", "rb") as f: pre_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "raw_chunks.pkl", "rb") as f: raw_chunks = pickle.load(f)
with open(ASSETS_DIR_APP / "ids.pkl", "rb") as f: ids = pickle.load(f)
with open(ASSETS_DIR_APP / "metas.pkl", "rb") as f: metas = pickle.load(f)
print("✓ TF-IDF/Assets loaded for Gradio App.")
except Exception as e:
print(f"CRITICAL ERROR loading TF-IDF/Assets for Gradio App: {e}")
setup_successful = False
if setup_successful:
print(f"⏳ Connecting to ChromaDB at {DB_DIR_APP} for Gradio App...")
try:
client = chromadb.PersistentClient(path=str(DB_DIR_APP.resolve()))
col = client.get_collection(COL_NAME) # Αν δεν υπάρχει μετά το setup, εδώ θα γίνει σφάλμα.
print(f"✓ Connected to ChromaDB. Collection '{COL_NAME}' count: {col.count()}")
if col.count() == 0 and len(ids) > 0: # Αν υπάρχουν ids αλλά η βάση είναι άδεια
print(f"!!! CRITICAL WARNING: ChromaDB collection '{COL_NAME}' is EMPTY at {DB_DIR_APP} but assets were loaded. Setup might have failed to populate DB correctly.")
setup_successful = False
except Exception as e:
print(f"CRITICAL ERROR connecting to ChromaDB or getting collection for Gradio App: {e}")
setup_successful = False
else:
print("!!! Setup process failed or was skipped. Gradio app will not function correctly. !!!")
# ---------------------- HYBRID SEARCH (Κύρια Λογική) ---
def hybrid_search_gradio(query, k=5):
if not setup_successful or not ids or not col or not model or not tok:
return "Σφάλμα: Η εφαρμογή δεν αρχικοποιήθηκε σωστά. Τα δεδομένα ή το μοντέλο δεν φορτώθηκαν. Ελέγξτε τα logs εκκίνησης."
if not query.strip():
return "Παρακαλώ εισάγετε μια ερώτηση."
q_pre = preprocess(query)
words = q_pre.split()
alpha = ALPHA_LONGQ if len(words) > 30 else ALPHA_BASE
exact_ids_set = {ids[i] for i, t in enumerate(pre_chunks) if q_pre in t}
q_emb_np = cls_embed([q_pre], tok, model)
q_emb_list = q_emb_np.tolist()
try:
sem_results = col.query(query_embeddings=q_emb_list, n_results=min(k * 30, len(ids)), include=["distances"])
except Exception as e:
# Εκτύπωση του σφάλματος στα logs του server για διάγνωση
print(f"ERROR during ChromaDB query in hybrid_search_gradio: {type(e).__name__}: {e}")
return "Σφάλμα κατά την σημασιολογική αναζήτηση. Επικοινωνήστε με τον διαχειριστή."
sem_sims = {doc_id: 1 - dist for doc_id, dist in zip(sem_results["ids"][0], sem_results["distances"][0])}
q_char_sparse = char_vec.transform([q_pre])
q_char_normalized = sk_normalize(q_char_sparse)
char_sim_scores = (q_char_normalized @ X_char.T).toarray().flatten()
q_word_sparse = word_vec.transform([q_pre])
q_word_normalized = sk_normalize(q_word_sparse)
word_sim_scores = (q_word_normalized @ X_word.T).toarray().flatten()
lex_sims = {}
for idx, (c_score, w_score) in enumerate(zip(char_sim_scores, word_sim_scores)):
if c_score > 0 or w_score > 0:
if idx < len(ids): lex_sims[ids[idx]] = 0.85 * c_score + 0.15 * w_score
else: print(f"Warning (hybrid_search): Lexical score index {idx} out of bounds for ids list (len: {len(ids)}).")
all_chunk_ids_set = set(sem_sims.keys()) | set(lex_sims.keys()) | exact_ids_set
scored = []
for chunk_id_key in all_chunk_ids_set:
s = alpha * sem_sims.get(chunk_id_key, 0.0) + (1 - alpha) * lex_sims.get(chunk_id_key, 0.0)
if chunk_id_key in exact_ids_set: s = 1.0
scored.append((chunk_id_key, s))
scored.sort(key=lambda x: x[1], reverse=True)
hits_output = []
seen_doc_main_ids = set()
for chunk_id_val, score_val in scored:
try: idx_in_lists = ids.index(chunk_id_val)
except ValueError: print(f"Warning (hybrid_search): chunk_id '{chunk_id_val}' not found in loaded ids. Skipping."); continue
doc_meta = metas[idx_in_lists]
doc_main_id = doc_meta['id']
if doc_main_id in seen_doc_main_ids: continue
original_url_from_meta = doc_meta.get('url', '#')
pdf_gcs_url = "#"
pdf_filename_display = "N/A"
if original_url_from_meta and original_url_from_meta != '#':
pdf_filename_extracted = os.path.basename(original_url_from_meta)
if pdf_filename_extracted and pdf_filename_extracted.lower().endswith(".pdf"):
pdf_gcs_url = f"{GCS_PUBLIC_URL_PREFIX}{pdf_filename_extracted}"
pdf_filename_display = pdf_filename_extracted
elif pdf_filename_extracted: pdf_filename_display = "Source is not a PDF"
# else: pdf_filename_display = "No source URL" # This case is covered by initialization
# else: pdf_filename_display = "No source URL" # This case is covered by initialization
hits_output.append({
"score": score_val, "title": doc_meta.get('title', 'N/A'),
"snippet": raw_chunks[idx_in_lists][:500] + " ...",
"original_url_meta": original_url_from_meta, "pdf_serve_url": pdf_gcs_url,
"pdf_filename_display": pdf_filename_display
})
seen_doc_main_ids.add(doc_main_id)
if len(hits_output) >= k: break
if not hits_output: return "Δεν βρέθηκαν σχετικά αποτελέσματα."
output_md = f"Βρέθηκαν **{len(hits_output)}** σχετικά αποτελέσματα:\n\n"
for hit in hits_output:
output_md += f"### {hit['title']} (Score: {hit['score']:.3f})\n"
snippet_wrapped = textwrap.fill(hit['snippet'].replace("\n", " "), width=100)
output_md += f"**Απόσπασμα:** {snippet_wrapped}\n"
if hit['pdf_serve_url'] and hit['pdf_serve_url'] != '#':
output_md += f"**Πηγή (PDF):** <a href='{hit['pdf_serve_url']}' target='_blank'>{hit['pdf_filename_display']}</a>\n"
elif hit['original_url_meta'] and hit['original_url_meta'] != '#':
output_md += f"**Πηγή (αρχικό από metadata):** [{hit['original_url_meta']}]({hit['original_url_meta']})\n"
output_md += "---\n"
return output_md
# ---------------------- GRADIO INTERFACE -----------------------------------
print("🚀 Launching Gradio Interface for GreekBert...")
iface = gr.Interface(
fn=hybrid_search_gradio,
inputs=gr.Textbox(lines=3, placeholder="Γράψε την ερώτησή σου εδώ...", label=f"Ερώτηση προς τον βοηθό (Μοντέλο: {MODEL_NAME.split('/')[-1]}):"),
outputs=gr.Markdown(label="Απαντήσεις από τα έγγραφα:", rtl=False, sanitize_html=False),
title=f"🏛️ Ελληνικό Chatbot Υβριδικής Αναζήτησης (GreekBert - {MODEL_NAME.split('/')[-1]})",
description=(f"Πληκτρολογήστε την ερώτησή σας για αναζήτηση. Χρησιμοποιεί το μοντέλο: {MODEL_NAME}.\n"
"Τα PDF ανοίγουν από Google Cloud Storage σε νέα καρτέλα."),
allow_flagging="never",
examples=[
["Τεχνολογίας τροφίμων;", 5],
["Αμπελουργίας και της οινολογίας", 3],
["Ποιες θέσεις αφορούν διδάσκοντες μερικής απασχόλησης στο Τμήμα Νοσηλευτικής του Πανεπιστημίου Ιωαννίνων;", 5]
],
)
if __name__ == '__main__':
# Το allowed_paths δεν είναι απαραίτητο αν δεν εξυπηρετούνται άλλα τοπικά στατικά αρχεία.
iface.launch() |