Spaces:
Sleeping
Sleeping
File size: 31,294 Bytes
3e8cef3 e2ecb84 3e8cef3 334abc2 3e8cef3 334abc2 3e8cef3 334abc2 3e8cef3 334abc2 3e8cef3 3e2d787 3e8cef3 3e2d787 3e8cef3 3e2d787 3e8cef3 7ba2d29 3e8cef3 ea97c58 3e8cef3 ea97c58 3e8cef3 ea97c58 3e8cef3 7ba2d29 3e8cef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import streamlit as st
#import cudf.pandas
#cudf.pandas.install()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
coef = 0.8
font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
text.set_fontsize(font_size)
wrapped_text = textwrap.fill(text.get_text(), width=20)
text.set_text(wrapped_text)
plt.axis('off')
plt.gca().invert_yaxis()
plt.gcf().set_size_inches(20, 12)
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
plt.xticks(rotation=rotation)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
try:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
except:
try:
to_filter_columns = st.multiselect("Filter dataframe", df_.columns)
except:
try:
to_filter_columns = st.multiselect("Filter the dataframe on", df_.columns)
except:
pass
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
# if len(user_date_input) == 2:
# start_date, end_date = user_date_input
# df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
def merge_clusters(df, column):
cluster_terms_ = df.__dict__['cluster_terms']
cluster_labels_ = df.__dict__['cluster_labels']
label_name_map = {label: cluster_terms_[label] for label in set(cluster_labels_)}
merge_map = {}
# Iterate over term pairs and decide on merging based on the distance
for idx, term1 in enumerate(cluster_terms_):
for jdx, term2 in enumerate(cluster_terms_):
if idx < jdx and distance(term1, term2) <= 3: # Adjust threshold as needed
# Decide to merge labels corresponding to jdx into labels corresponding to idx
# Find labels corresponding to jdx and idx
labels_to_merge = [label for label, term_index in enumerate(cluster_labels_) if term_index == jdx]
for label in labels_to_merge:
merge_map[label] = idx # Map the label to use the term index of term1
# Update the analyzer with the merged numeric labels
updated_cluster_labels_ = [merge_map[label] if label in merge_map else label for label in cluster_labels_]
df.__dict__['cluster_labels'] = updated_cluster_labels_
# Optional: Update string labels to reflect merged labels
updated_string_labels = [cluster_terms_[label] for label in updated_cluster_labels_]
df.__dict__['string_labels'] = updated_string_labels
return updated_string_labels
def analyze_and_predict(data, analyzers, col_names, clusters):
visualizer = UAPVisualizer()
new_data = pd.DataFrame()
for i, column in enumerate(col_names):
#new_data[f'Analyzer_{column}'] = analyzers[column].__dict__['cluster_labels']
new_data[f'Analyzer_{column}'] = clusters[column]
data[f'Analyzer_{column}'] = clusters[column]
#data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_labels']
print(f"Cluster terms extracted for {column}")
for col in data.columns:
if 'Analyzer' in col:
data[col] = data[col].astype('category')
new_data = new_data.fillna('null').astype('category')
data_nums = new_data.apply(lambda x: x.cat.codes)
for col in data_nums.columns:
try:
categories = new_data[col].cat.categories
x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
bst, accuracy, preds = visualizer.train_xgboost(x_train, y_train, x_test, y_test, len(categories))
fig = visualizer.plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
with st.status(f"Charts Analyses: {col}", expanded=True) as status:
st.pyplot(fig)
status.update(label=f"Chart Processed: {col}", expanded=False)
except Exception as e:
print(f"Error processing {col}: {e}")
continue
return new_data, data
from config import API_KEY, GEMINI_KEY, FORMAT_LONG
with torch.no_grad():
torch.cuda.empty_cache()
#st.set_page_config(
# page_title="UAP ANALYSIS",
# page_icon=":alien:",
# layout="wide",
# initial_sidebar_state="expanded",
#)
st.title('UAP Analysis Dashboard')
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = None
# Load dataset
data_path = 'parsed_files_distance_embeds.h5'
my_dataset = st.file_uploader("Upload Parsed DataFrame", type=["csv", "xlsx"])
if my_dataset is not None:
if parsed: # save space by cleaning default dataset
parsed = None
try:
if my_dataset.type == "text/csv":
data = pd.read_csv(my_dataset)
elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
data = pd.read_excel(my_dataset)
else:
st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.")
st.stop()
parser = filter_dataframe(data)
st.session_state['parsed_responses'] = parser
st.dataframe(parser)
st.success(f"Successfully loaded and displayed data from {my_dataset.name}")
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
else:
parsed = load_data(data_path).drop(columns=['embeddings'])
parsed_responses = filter_dataframe(parsed)
st.session_state['parsed_responses'] = parsed_responses
st.dataframe(parsed_responses)
col1, col2 = st.columns(2)
with col1:
col_parsed = st.selectbox("Which column do you want to query?", st.session_state['parsed_responses'].columns)
with col2:
GEMINI_KEY = st.text_input('Gemini API Key', value=GEMINI_KEY, type='password', help="Enter your Gemini API key")
if col_parsed and GEMINI_KEY:
selected_column_data = st.session_state['parsed_responses'][col_parsed].tolist()
question = st.text_input("Ask a question or leave empty for summarization")
if st.button("Generate Query") and selected_column_data:
st.write(gemini_query(question, selected_column_data, GEMINI_KEY))
st.session_state['stage'] = 1
if st.session_state['stage'] > 0 :
with st.form(border=True, key='Select Columns for Analysis'):
columns_to_analyze = st.multiselect(
label='Select columns to analyze',
options=st.session_state['parsed_responses'].columns
)
if st.form_submit_button("Process Data"):
if columns_to_analyze:
analyzers = []
col_names = []
clusters = {}
for column in columns_to_analyze:
with torch.no_grad():
with st.status(f"Processing {column}", expanded=True) as status:
analyzer = UAPAnalyzer(st.session_state['parsed_responses'], column)
st.write(f"Processing {column}...")
analyzer.preprocess_data(top_n=32)
st.write("Reducing dimensionality...")
analyzer.reduce_dimensionality(method='UMAP', n_components=2, n_neighbors=15, min_dist=0.1)
st.write("Clustering data...")
analyzer.cluster_data(method='HDBSCAN', min_cluster_size=15)
analyzer.get_tf_idf_clusters(top_n=3)
st.write("Naming clusters...")
analyzers.append(analyzer)
col_names.append(column)
clusters[column] = analyzer.merge_similar_clusters(cluster_terms=analyzer.__dict__['cluster_terms'], cluster_labels=analyzer.__dict__['cluster_labels'])
# Run the visualization
# fig = datamapplot.create_plot(
# analyzer.__dict__['reduced_embeddings'],
# analyzer.__dict__['cluster_labels'].astype(str),
# #label_font_size=11,
# label_wrap_width=20,
# use_medoids=True,
# )#.to_html(full_html=False, include_plotlyjs='cdn')
# st.pyplot(fig.savefig())
status.update(label=f"Processing {column} complete", expanded=False)
st.session_state['analyzers'] = analyzers
st.session_state['col_names'] = col_names
st.session_state['clusters'] = clusters
# save space
parsed = None
analyzers = None
col_names = None
clusters = None
if st.session_state['clusters'] is not None:
try:
new_data, parsed_responses = analyze_and_predict(st.session_state['parsed_responses'], st.session_state['analyzers'], st.session_state['col_names'], st.session_state['clusters'])
st.session_state['dataset'] = parsed_responses
st.session_state['new_data'] = new_data
st.session_state['data_processed'] = True
except Exception as e:
st.write(f"Error processing data: {e}")
if st.session_state['data_processed']:
try:
visualizer = UAPVisualizer(data=st.session_state['new_data'])
#new_data = pd.DataFrame() # Assuming new_data is prepared earlier in the code
fig2 = visualizer.plot_cramers_v_heatmap(data=st.session_state['new_data'], significance_level=0.05)
with st.status(f"Cramer's V Chart", expanded=True) as statuss:
st.pyplot(fig2)
statuss.update(label="Cramer's V chart plotted", expanded=False)
except Exception as e:
st.write(f"Error plotting Cramers V: {e}")
for i, column in enumerate(st.session_state['col_names']):
#if stateful_button(f"Show {column} clusters {i}", key=f"show_{column}_clusters"):
# if st.session_state['data_processed']:
# with st.status(f"Show clusters {column}", expanded=True) as stats:
# fig3 = st.session_state['analyzers'][i].plot_embeddings4(title=f"{column} clusters", cluster_terms=st.session_state['analyzers'][i].__dict__['cluster_terms'], cluster_labels=st.session_state['analyzers'][i].__dict__['cluster_labels'], reduced_embeddings=st.session_state['analyzers'][i].__dict__['reduced_embeddings'], column=f'Analyzer_{column}', data=st.session_state['new_data'])
# stats.update(label=f"Show clusters {column} complete", expanded=False)
if st.session_state['data_processed']:
with st.status(f"Show clusters {column}", expanded=True) as stats:
fig3 = st.session_state['analyzers'][i].plot_embeddings4(
title=f"{column} clusters",
cluster_terms=st.session_state['analyzers'][i].__dict__['cluster_terms'],
cluster_labels=st.session_state['analyzers'][i].__dict__['cluster_labels'],
reduced_embeddings=st.session_state['analyzers'][i].__dict__['reduced_embeddings'],
column=column, # Use the original column name here
data=st.session_state['parsed_responses'] # Use the original dataset here
)
stats.update(label=f"Show clusters {column} complete", expanded=False)
st.session_state['analysis_complete'] = True
# this will check if the dataframe is not empty
# if st.session_state['new_data'] is not None:
# parsed2 = st.session_state.get('dataset', pd.DataFrame())
# parsed2 = filter_dataframe(parsed2)
# col1, col2 = st.columns(2)
# st.dataframe(parsed2)
# with col1:
# col_parsed2 = st.selectbox("Which columns do you want to query?", parsed2.columns)
# with col2:
# GEMINI_KEY = st.text_input('Gemini APIs Key', GEMINI_KEY, type='password', help="Enter your Gemini API key")
# if col_parsed and GEMINI_KEY:
# selected_column_data2 = parsed2[col_parsed2].tolist()
# question2 = st.text_input("Ask a questions or leave empty for summarization")
# if st.button("Generate Query") and selected_column_data2:
# with st.status(f"Generating Query", expanded=True) as status:
# gemini_answer = gemini_query(question2, selected_column_data2, GEMINI_KEY)
# st.write(gemini_answer)
# st.session_state['gemini_answer'] = gemini_answer
if 'analysis_complete' in st.session_state and st.session_state['analysis_complete']:
ticked_analysis = st.checkbox('Query Processed Data')
if ticked_analysis:
if st.session_state['new_data'] is not None:
parsed2 = st.session_state.get('dataset', pd.DataFrame()).copy()
parsed2 = filter_dataframe(parsed2)
col1, col2 = st.columns(2)
st.dataframe(parsed2)
with col1:
col_parsed2 = st.selectbox("Which columns do you want to query?", parsed2.columns)
with col2:
GEMINI_KEY = st.text_input('Gemini APIs Key', value=GEMINI_KEY, type='password', help="Enter your Gemini API key")
if col_parsed2 and GEMINI_KEY:
selected_column_data2 = parsed2[col_parsed2].tolist()
question2 = st.text_input("Ask a questions or leave empty for summarization")
if st.button("Generate Queries") and selected_column_data2:
with st.status(f"Generating Query", expanded=True) as status:
gemini_answer = gemini_query(question2, selected_column_data2, GEMINI_KEY)
st.write(gemini_answer)
st.session_state['gemini_answer'] = gemini_answer
|