Spaces:
Sleeping
Sleeping
File size: 65,498 Bytes
07e89d3 40e0215 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 40e0215 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 70f1c51 07e89d3 07750db 07e89d3 7364101 07e89d3 93f2f6d 07e89d3 4bfeafe 07750db 4bfeafe 07e89d3 2d7a9ee 4bfeafe 07e89d3 93f2f6d 07e89d3 7d7ed58 93f2f6d 07e89d3 56136b4 07e89d3 93f2f6d 07e89d3 7d7ed58 07e89d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 |
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import umap
import plotly.graph_objects as go
from sentence_transformers import SentenceTransformer
import torch
with torch.no_grad():
embed_model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2')
embed_model.to('cuda')
from sentence_transformers.util import pytorch_cos_sim, pairwise_cos_sim
#from stqdm.notebook import stqdm
#stqdm.pandas()
import logging
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import umap
import fast_hdbscan
import plotly.graph_objects as go
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import numpy as np
from Levenshtein import distance
import logging
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import plot_importance
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, confusion_matrix
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.mosaicplot import mosaic
import pickle
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import plot_importance
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, confusion_matrix
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.mosaicplot import mosaic
from statsmodels.api import stats
import os
import time
import concurrent.futures
from requests.exceptions import HTTPError
from stqdm import stqdm
stqdm.pandas()
import json
import pandas as pd
from openai import OpenAI
import numpy as np
import matplotlib.pyplot as plt
import squarify
import matplotlib.colors as mcolors
import textwrap
import pandas as pd
import streamlit as st
import spaces
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class UAPAnalyzer:
"""
A class for analyzing and clustering textual data within a pandas DataFrame using
Natural Language Processing (NLP) techniques and machine learning models.
Attributes:
data (pd.DataFrame): The dataset containing textual data for analysis.
column (str): The name of the column in the DataFrame to be analyzed.
embeddings (np.ndarray): The vector representations of textual data.
reduced_embeddings (np.ndarray): The dimensionality-reduced embeddings.
cluster_labels (np.ndarray): The labels assigned to each data point after clustering.
cluster_terms (list): The list of terms associated with each cluster.
tfidf_matrix (sparse matrix): The Term Frequency-Inverse Document Frequency (TF-IDF) matrix.
models (dict): A dictionary to store trained machine learning models.
evaluations (dict): A dictionary to store evaluation results of models.
data_nums (pd.DataFrame): The DataFrame with numerical encoding of categorical data.
"""
def __init__(self, data, column, has_embeddings=False):
"""
Initializes the UAPAnalyzer with a dataset and a specified column for analysis.
Args:
data (pd.DataFrame): The dataset for analysis.
column (str): The column within the dataset to analyze.
"""
assert isinstance(data, pd.DataFrame), "Data must be a pandas DataFrame"
assert column in data.columns, f"Column '{column}' not found in DataFrame"
self.has_embeddings = has_embeddings
self.data = data
self.column = column
self.embeddings = None
self.reduced_embeddings = None
self.cluster_labels = None
self.cluster_names = None
self.cluster_terms = None
self.cluster_terms_embeddings = None
self.tfidf_matrix = None
self.models = {} # To store trained models
self.evaluations = {} # To store evaluation results
self.data_nums = None # Encoded numerical data
self.x_train = None
self.y_train = None
self.x_test = None
self.y_test = None
self.preds = None
self.new_dataset = None
self.model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2')
self.model = self.model.to('cuda')
#self.cluster_names_ = pd.DataFrame()
logging.info("UAPAnalyzer initialized")
def preprocess_data(self, trim=False, has_embeddings=False, top_n=32,):
"""
Preprocesses the data by optionally trimming the dataset to include only the top N labels and extracting embeddings.
Args:
trim (bool): Whether to trim the dataset to include only the top N labels.
top_n (int): The number of top labels to retain if trimming is enabled.
"""
logging.info("Preprocessing data")
# if trim is True
if trim:
# Identify the top labels based on value counts
top_labels = self.data[self.column].value_counts().nlargest(top_n).index.tolist()
# Revise the column data, setting values to 'Other' if they are not in the top labels
self.data[f'{self.column}_revised'] = np.where(self.data[self.column].isin(top_labels), self.data[self.column], 'Other')
# Convert the column data to string type before passing to _extract_embeddings
# This is useful especially if the data type of the column is not originally string
string_data = self.data[f'{self.column}'].astype(str)
# Extract embeddings from the revised and string-converted column data
if has_embeddings:
self.embeddings = self.data['embeddings'].to_list()
else:
self.embeddings = self._extract_embeddings(string_data)
logging.info("Data preprocessing complete")
@spaces.GPU
def _extract_embeddings(self, data_column):
"""
Extracts embeddings from the given data column.
Args:
data_column (pd.Series): The column from which to extract embeddings.
Returns:
np.ndarray: The extracted embeddings.
"""
logging.info("Extracting embeddings")
# convert to str
return embed_model.encode(data_column.tolist(), show_progress_bar=True)
@spaces.GPU
def reduce_dimensionality(self, method='UMAP', n_components=2, **kwargs):
"""
Reduces the dimensionality of embeddings using specified method.
Args:
method (str): The dimensionality reduction method to use ('UMAP' or 'PCA').
n_components (int): The number of dimensions to reduce to.
**kwargs: Additional keyword arguments for the dimensionality reduction method.
"""
logging.info(f"Reducing dimensionality using {method}")
if method == 'UMAP':
reducer = umap.UMAP(n_components=n_components, **kwargs)
elif method == 'PCA':
reducer = PCA(n_components=n_components)
else:
raise ValueError("Unsupported dimensionality reduction method")
self.reduced_embeddings = reducer.fit_transform(self.embeddings)
logging.info(f"Dimensionality reduced using {method}")
@spaces.GPU
def cluster_data(self, method='HDBSCAN', **kwargs):
"""
Clusters the reduced dimensionality data using the specified clustering method.
Args:
method (str): The clustering method to use ('HDBSCAN' or 'KMeans').
**kwargs: Additional keyword arguments for the clustering method.
"""
logging.info(f"Clustering data using {method}")
if method == 'HDBSCAN':
clusterer = fast_hdbscan.HDBSCAN(**kwargs)
elif method == 'KMeans':
clusterer = KMeans(**kwargs)
else:
raise ValueError("Unsupported clustering method")
clusterer.fit(self.reduced_embeddings)
self.cluster_labels = clusterer.labels_
logging.info(f"Data clustering complete using {method}")
@spaces.GPU
def get_tf_idf_clusters(self, top_n=2):
"""
Names clusters using the most frequent terms based on TF-IDF analysis.
Args:
top_n (int): The number of top terms to consider for naming each cluster.
"""
logging.info("Naming clusters based on top TF-IDF terms.")
# Ensure data has been clustered
assert self.cluster_labels is not None, "Data has not been clustered yet."
vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')
# Fit the vectorizer to the text data and transform it into a TF-IDF matrix
tfidf_matrix = vectorizer.fit_transform(self.data[f'{self.column}'].astype(str))
# Initialize an empty list to store the cluster terms
self.cluster_terms = []
for cluster_id in np.unique(self.cluster_labels):
# Skip noise if present (-1 in HDBSCAN)
if cluster_id == -1:
continue
# Find indices of documents in the current cluster
indices = np.where(self.cluster_labels == cluster_id)[0]
# Compute the mean TF-IDF score for each term in the cluster
cluster_tfidf_mean = np.mean(tfidf_matrix[indices], axis=0)
# Use the matrix directly for indexing if it does not support .toarray()
# Ensure it's in a format that supports indexing, convert if necessary
if hasattr(cluster_tfidf_mean, "toarray"):
dense_mean = cluster_tfidf_mean.toarray().flatten()
else:
dense_mean = np.asarray(cluster_tfidf_mean).flatten()
# Get the indices of the top_n terms
top_n_indices = np.argsort(dense_mean)[-top_n:]
# Get the corresponding terms for these top indices
terms = vectorizer.get_feature_names_out()
top_terms = [terms[i] for i in top_n_indices]
# Join the top_n terms with a hyphen
cluster_name = '-'.join(top_terms)
# Append the cluster name to the list
self.cluster_terms.append(cluster_name)
# Convert the list of cluster terms to a categorical data type
self.cluster_terms = pd.Categorical(self.cluster_terms)
logging.info("Cluster naming completed.")
def merge_similar_clusters(self, distance='cosine', char_diff_threshold = 3, similarity_threshold = 0.92, embeddings = 'SBERT'):
"""
Merges similar clusters based on cosine similarity of their associated terms.
Args:
similarity_threshold (float): The similarity threshold above which clusters are considered similar enough to merge.
"""
from collections import defaultdict
logging.info("Merging similar clusters")
# A mapping from cluster names to a set of cluster names to be merged
merge_mapping = defaultdict(set)
merge_labels = defaultdict(set)
if distance == 'levenshtein':
distances = {}
for i, name1 in enumerate(self.cluster_terms):
for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
dist = distance(name1, name2)
if dist <= char_diff_threshold:
logging.info(f"Merging '{name2}' into '{name1}'")
merge_mapping[name1].add(name2)
elif distance == 'cosine':
self.cluster_terms_embeddings = embed_model.encode(self.cluster_terms)
cos_sim_matrix = pytorch_cos_sim(self.cluster_terms_embeddings, self.cluster_terms_embeddings)
for i, name1 in enumerate(self.cluster_terms):
for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
if cos_sim_matrix[i][j] > similarity_threshold:
#st.write(f"Merging cluster '{name2}' into cluster '{name1}' based on cosine similarity")
logging.info(f"Merging cluster '{name2}' into cluster '{name1}' based on cosine similarity")
merge_mapping[name1].add(name2)
# Flatten the merge mapping to a simple name change mapping
name_change_mapping = {}
for cluster_name, merges in merge_mapping.items():
for merge_name in merges:
name_change_mapping[merge_name] = cluster_name
# Update cluster labels based on name changes
updated_cluster_terms = []
original_to_updated_index = {}
for i, name in enumerate(self.cluster_terms):
updated_name = name_change_mapping.get(name, name)
if updated_name not in updated_cluster_terms:
updated_cluster_terms.append(updated_name)
original_to_updated_index[i] = len(updated_cluster_terms) - 1
else:
updated_index = updated_cluster_terms.index(updated_name)
original_to_updated_index[i] = updated_index
self.cluster_terms = updated_cluster_terms # Update cluster terms with merged names
self.clusters_labels = np.array([original_to_updated_index[label] for label in self.cluster_labels])
# Update cluster labels according to the new index mapping
# self.cluster_labels = np.array([original_to_updated_index[label] if label in original_to_updated_index else -1 for label in self.cluster_labels])
# self.cluster_terms = [self.cluster_terms[original_to_updated_index[label]] if label != -1 else 'Noise' for label in self.cluster_labels]
# Log the total number of merges
total_merges = sum(len(merges) for merges in merge_mapping.values())
logging.info(f"Total clusters merged: {total_merges}")
unique_labels = np.unique(self.cluster_labels)
label_to_index = {label: index for index, label in enumerate(unique_labels)}
self.cluster_labels = np.array([label_to_index[label] for label in self.cluster_labels])
self.cluster_terms = [self.cluster_terms[label_to_index[label]] for label in self.cluster_labels]
def merge_similar_clusters2(self, distance='cosine', char_diff_threshold=3, similarity_threshold=0.92):
logging.info("Merging similar clusters based on distance: {}".format(distance))
from collections import defaultdict
merge_mapping = defaultdict(set)
if distance == 'levenshtein':
for i, name1 in enumerate(self.cluster_terms):
for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
dist = distance(name1, name2)
if dist <= char_diff_threshold:
merge_mapping[name1].add(name2)
logging.info(f"Merging '{name2}' into '{name1}' based on Levenshtein distance")
elif distance == 'cosine':
if self.cluster_terms_embeddings is None:
self.cluster_terms_embeddings = embed_model.encode(self.cluster_terms)
cos_sim_matrix = pytorch_cos_sim(self.cluster_terms_embeddings, self.cluster_terms_embeddings)
for i in range(len(self.cluster_terms)):
for j in range(i + 1, len(self.cluster_terms)):
if cos_sim_matrix[i][j] > similarity_threshold:
merge_mapping[self.cluster_terms[i]].add(self.cluster_terms[j])
#st.write(f"Merging cluster '{self.cluster_terms[j]}' into cluster '{self.cluster_terms[i]}'")
logging.info(f"Merging cluster '{self.cluster_terms[j]}' into cluster '{self.cluster_terms[i]}'")
self._update_cluster_terms_and_labels(merge_mapping)
def _update_cluster_terms_and_labels(self, merge_mapping):
# Flatten the merge mapping to a simple name change mapping
name_change_mapping = {old: new for new, olds in merge_mapping.items() for old in olds}
# Update cluster terms and labels
unique_new_terms = list(set(name_change_mapping.values()))
# replace the old terms with the new terms (name2) otherwise, keep the old terms (name1)
# self.cluster_terms = [name_change_mapping.get(term, term) for term in self.cluster_terms]
# self.cluster_labels = np.array([unique_new_terms.index(term) if term in unique_new_terms else term for term in self.cluster_terms])
self.cluster_terms = [name_change_mapping.get(term, term) for term in self.cluster_terms]
self.cluster_labels = [unique_new_terms.index(term) if term in unique_new_terms else -1 for term in self.cluster_terms]
logging.info(f"Total clusters merged: {len(merge_mapping)}")
def cluster_levenshtein(self, cluster_terms, cluster_labels, char_diff_threshold=3):
from Levenshtein import distance # Make sure to import the correct distance function
merge_map = {}
# Iterate over term pairs and decide on merging based on the distance
for idx, term1 in enumerate(cluster_terms):
for jdx, term2 in enumerate(cluster_terms):
if idx < jdx and distance(term1, term2) <= char_diff_threshold:
labels_to_merge = [label for label, term_index in enumerate(cluster_labels) if term_index == jdx]
for label in labels_to_merge:
merge_map[label] = idx # Map the label to use the term index of term1
logging.info(f"Merging '{term2}' into '{term1}'")
st.write(f"Merging '{term2}' into '{term1}'")
# Update the cluster labels
updated_cluster_labels = [merge_map.get(label, label) for label in cluster_labels]
# Update string labels to reflect merged labels
updated_string_labels = [cluster_terms[label] for label in updated_cluster_labels]
return updated_string_labels
@spaces.GPU
def cluster_cosine(self, cluster_terms, cluster_labels, similarity_threshold):
from sklearn.metrics.pairwise import cosine_similarity
cluster_terms_embeddings = embed_model.encode(cluster_terms)
# Compute cosine similarity matrix in a vectorized form
cos_sim_matrix = cosine_similarity(cluster_terms_embeddings, cluster_terms_embeddings)
merge_map = {}
n_terms = len(cluster_terms)
# Iterate only over upper triangular matrix excluding diagonal to avoid redundant computations and self-comparison
for idx in range(n_terms):
for jdx in range(idx + 1, n_terms):
if cos_sim_matrix[idx, jdx] >= similarity_threshold:
labels_to_merge = [label for label, term_index in enumerate(cluster_labels) if term_index == jdx]
for label in labels_to_merge:
merge_map[label] = idx
st.write(f"Merging '{cluster_terms[jdx]}' into '{cluster_terms[idx]}'")
logging.info(f"Merging '{cluster_terms[jdx]}' into '{cluster_terms[idx]}'")
# Update the cluster labels
updated_cluster_labels = [merge_map.get(label, label) for label in cluster_labels]
# Update string labels to reflect merged labels
updated_string_labels = [cluster_terms[label] for label in updated_cluster_labels]
# make a dataframe with index, cluster label and cluster term
return updated_string_labels
def merge_similar_clusters(self, cluster_terms, cluster_labels, distance_type='cosine', char_diff_threshold=3, similarity_threshold=0.92):
if distance_type == 'levenshtein':
return self.cluster_levenshtein(cluster_terms, cluster_labels, char_diff_threshold)
elif distance_type == 'cosine':
return self.cluster_cosine(cluster_terms, cluster_labels, similarity_threshold)
def plot_embeddings2(self, title=None):
assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."
logging.info("Plotting embeddings with TF-IDF colors")
fig = go.Figure()
unique_cluster_terms = np.unique(self.cluster_terms)
for cluster_term in unique_cluster_terms:
if cluster_term != 'Noise':
indices = np.where(np.array(self.cluster_terms) == cluster_term)[0]
# Plot points in the current cluster
fig.add_trace(
go.Scatter(
x=self.reduced_embeddings[indices, 0],
y=self.reduced_embeddings[indices, 1],
mode='markers',
marker=dict(
size=5,
opacity=0.8,
),
name=cluster_term,
text=self.data[f'{self.column}'].iloc[indices],
hoverinfo='text',
)
)
else:
# Plot noise points differently if needed
fig.add_trace(
go.Scatter(
x=self.reduced_embeddings[indices, 0],
y=self.reduced_embeddings[indices, 1],
mode='markers',
marker=dict(
size=5,
opacity=0.5,
color='grey'
),
name='Noise',
text=[self.data[f'{self.column}'][i] for i in indices], # Adjusted for potential pandas use
hoverinfo='text',
)
)
# else:
# indices = np.where(np.array(self.cluster_terms) == 'Noise')[0]
# # Plot noise points
# fig.add_trace(
# go.Scatter(
# x=self.reduced_embeddings[indices, 0],
# y=self.reduced_embeddings[indices, 1],
# mode='markers',
# marker=dict(
# size=5,
# opacity=0.8,
# ),
# name='Noise',
# text=self.data[f'{self.column}'].iloc[indices],
# hoverinfo='text',
# )
# )
fig.update_layout(title=title, showlegend=True, legend_title_text='Top TF-IDF Terms')
#return fig
st.plotly_chart(fig, use_container_width=True)
#fig.show()
#logging.info("Embeddings plotted with TF-IDF colors")
def plot_embeddings3(self, title=None):
assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."
logging.info("Plotting embeddings with TF-IDF colors")
fig = go.Figure()
unique_cluster_terms = np.unique(self.cluster_terms)
terms_order = {term: i for i, term in enumerate(np.unique(self.cluster_terms, return_index=True)[0])}
#indices = np.argsort([terms_order[term] for term in self.cluster_terms])
# Handling color assignment, especially for noise
colors = {term: ('grey' if term == 'Noise' else None) for term in unique_cluster_terms}
color_map = px.colors.qualitative.Plotly # Default color map from Plotly Express for consistency
# Apply a custom color map, handling 'Noise' specifically
color_idx = 0
for cluster_term in unique_cluster_terms:
indices = np.where(np.array(self.cluster_terms) == cluster_term)[0]
if cluster_term != 'Noise':
marker_color = color_map[color_idx % len(color_map)]
color_idx += 1
else:
marker_color = 'grey'
fig.add_trace(
go.Scatter(
x=self.reduced_embeddings[indices, 0],
y=self.reduced_embeddings[indices, 1],
mode='markers',
marker=dict(
size=5,
opacity=(0.5 if cluster_term == 'Noise' else 0.8),
color=marker_color
),
name=cluster_term,
text=self.data[f'{self.column}'].iloc[indices],
hoverinfo='text'
)
)
fig.data = sorted(fig.data, key=lambda trace: terms_order[trace.name])
fig.update_layout(title=title if title else "Embeddings Visualized", showlegend=True, legend_title_text='Top TF-IDF Terms')
st.plotly_chart(fig, use_container_width=True)
def plot_embeddings(self, title=None):
"""
Plots the reduced dimensionality embeddings with clusters indicated.
Args:
title (str): The title of the plot.
"""
# Ensure dimensionality reduction and TF-IDF based cluster naming have been performed
assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."
logging.info("Plotting embeddings with TF-IDF colors")
fig = go.Figure()
#for i, term in enumerate(self.cluster_terms):
# Indices of points in the current cluster
#unique_cluster_ids = np.unique(self.cluster_labels[self.cluster_labels != -1]) # Exclude noise
unique_cluster_terms = np.unique(self.cluster_terms)
unique_cluster_labels = np.unique(self.cluster_labels)
for i, (cluster_id, cluster_terms) in enumerate(zip(unique_cluster_labels, unique_cluster_terms)):
indices = np.where(self.cluster_labels == cluster_id)[0]
#indices = np.where(self.cluster_labels == i)[0]
# Plot points in the current cluster
fig.add_trace(
go.Scatter(
x=self.reduced_embeddings[indices, 0],
y=self.reduced_embeddings[indices, 1],
mode='markers',
marker=dict(
#color=i,
#colorscale='rainbow',
size=5,
opacity=0.8,
),
name=cluster_terms,
text=self.data[f'{self.column}'].iloc[indices],
hoverinfo='text',
)
)
fig.update_layout(title=title, showlegend=True, legend_title_text='Top TF-IDF Terms')
st.plotly_chart(fig, use_container_width=True)
logging.info("Embeddings plotted with TF-IDF colors")
def plot_embeddings4(self, title=None, cluster_terms=None, cluster_labels=None, reduced_embeddings=None, column=None, data=None):
"""
Plots the reduced dimensionality embeddings with clusters indicated.
Args:
title (str): The title of the plot.
"""
# Ensure dimensionality reduction and TF-IDF based cluster naming have been performed
assert reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
assert cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."
logging.info("Plotting embeddings with TF-IDF colors")
fig = go.Figure()
# Determine unique cluster IDs and terms, and ensure consistent color mapping
unique_cluster_ids = np.unique(cluster_labels)
unique_cluster_terms = [cluster_terms[i] for i in unique_cluster_ids]#if i != -1] # Exclude noise by ID
color_map = px.colors.qualitative.Plotly # Using Plotly Express's qualitative colors for consistency
color_idx = 0
# Map each cluster ID to a color
cluster_colors = {}
for cid in unique_cluster_ids:
#if cid != -1: # Exclude noise
cluster_colors[cid] = color_map[color_idx % len(color_map)]
color_idx += 1
#else:
# cluster_colors[cid] = 'grey' # Noise or outliers in grey
for cluster_id, cluster_term in zip(unique_cluster_ids, unique_cluster_terms):
indices = np.where(cluster_labels == cluster_id)[0]
fig.add_trace(
go.Scatter(
x=reduced_embeddings[indices, 0],
y=reduced_embeddings[indices, 1],
mode='markers',
marker=dict(
color=cluster_colors[cluster_id],
size=5,
opacity=0.8#if cluster_id != -1 else 0.5,
),
name=cluster_term,
text=data[f'{column}'].iloc[indices],
hoverinfo='text',
)
)
fig.update_layout(
title=title if title else "Embeddings Visualized",
showlegend=True,
legend_title_text='Top TF-IDF Terms',
legend=dict(
traceorder='normal', # 'normal' or 'reversed'; ensures that traces appear in the order they are added
itemsizing='constant'
)
)
st.plotly_chart(fig, use_container_width=True)
logging.info("Embeddings plotted with TF-IDF colors")
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
@spaces.GPU
def analyze_and_predict(data, analyzers, col_names):
"""
Performs analysis on the data using provided analyzers and makes predictions on specified columns.
Args:
data (pd.DataFrame): The dataset for analysis.
analyzers (list): A list of UAPAnalyzer instances.
col_names (list): Column names to be analyzed and predicted.
"""
new_data = pd.DataFrame()
for i, (column, analyzer) in enumerate(zip(col_names, analyzers)):
new_data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_terms']
logging.info(f"Cluster terms extracted for {column}")
new_data = new_data.fillna('null').astype('category')
data_nums = new_data.apply(lambda x: x.cat.codes)
for col in data_nums.columns:
try:
categories = new_data[col].cat.categories
x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
bst, accuracy, preds = train_xgboost(x_train, y_train, x_test, y_test, len(categories))
plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
except Exception as e:
logging.error(f"Error processing {col}: {e}")
return new_data
@spaces.GPU
def train_xgboost(x_train, y_train, x_test, y_test, num_classes):
"""
Trains an XGBoost model and evaluates its performance.
Args:
x_train (pd.DataFrame): Training features.
y_train (pd.Series): Training labels.
x_test (pd.DataFrame): Test features.
y_test (pd.Series): Test labels.
num_classes (int): The number of unique classes in the target variable.
Returns:
bst (Booster): The trained XGBoost model.
accuracy (float): The accuracy of the model on the test set.
"""
dtrain = xgb.DMatrix(x_train, label=y_train, enable_categorical=True)
dtest = xgb.DMatrix(x_test, label=y_test)
params = {'objective': 'multi:softmax', 'num_class': num_classes, 'max_depth': 6, 'eta': 0.3}
num_round = 100
bst = xgb.train(dtrain=dtrain, params=params, num_boost_round=num_round)
preds = bst.predict(dtest)
accuracy = accuracy_score(y_test, preds)
logging.info(f"XGBoost trained with accuracy: {accuracy:.2f}")
return bst, accuracy, preds
def plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col):
"""
Plots the feature importance, confusion matrix, and contingency table.
Args:
bst (Booster): The trained XGBoost model.
x_test (pd.DataFrame): Test features.
y_test (pd.Series): Test labels.
preds (np.array): Predictions made by the model.
categories (Index): Category names for the target variable.
accuracy (float): The accuracy of the model on the test set.
col (str): The target column name being analyzed and predicted.
"""
fig, axs = plt.subplots(1, 3, figsize=(25, 5), dpi=300)
fig.suptitle(f'{col.split(sep=".")[-1]} prediction', fontsize=35)
plot_importance(bst, ax=axs[0], importance_type='gain', show_values=False)
conf_matrix = confusion_matrix(y_test, preds)
sns.heatmap(conf_matrix, annot=True, fmt='g', cmap='Blues', xticklabels=categories, yticklabels=categories, ax=axs[1])
axs[1].set_title(f'Confusion Matrix\nAccuracy: {accuracy * 100:.2f}%')
# make axes rotated
axs[1].set_yticklabels(axs[1].get_yticklabels(), rotation=30, ha='right')
sorted_features = sorted(bst.get_score(importance_type="gain").items(), key=lambda x: x[1], reverse=True)
# The most important feature is the first element in the sorted list
most_important_feature = sorted_features[0][0]
# Create a contingency table
contingency_table = pd.crosstab(new_data[col], new_data[most_important_feature])
# resid pearson is used to calculate the residuals, which
table = stats.Table(contingency_table).resid_pearson
#print(table)
# Perform the chi-squared test
chi2, p, dof, expected = chi2_contingency(contingency_table)
# Print the results
print(f"Chi-squared test for {col} and {most_important_feature}: p-value = {p}")
sns.heatmap(table, annot=True, cmap='Greens', ax=axs[2])
# make axis rotated
axs[2].set_yticklabels(axs[2].get_yticklabels(), rotation=30, ha='right')
axs[2].set_title(f'Contingency Table between {col.split(sep=".")[-1]} and {most_important_feature.split(sep=".")[-1]}\np-value = {p}')
plt.tight_layout()
#plt.savefig(f"{col}_{accuracy:.2f}_prediction_XGB.jpeg", dpi=300)
return plt
def cramers_v(confusion_matrix):
"""Calculate Cramer's V statistic for categorical-categorical association."""
chi2 = chi2_contingency(confusion_matrix)[0]
n = confusion_matrix.sum().sum()
phi2 = chi2 / n
r, k = confusion_matrix.shape
phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
r_corr = r - ((r-1)**2)/(n-1)
k_corr = k - ((k-1)**2)/(n-1)
return np.sqrt(phi2corr / min((k_corr-1), (r_corr-1)))
def plot_cramers_v_heatmap(data, significance_level=0.05):
"""Plot heatmap of Cramer's V statistic for each pair of categorical variables in a DataFrame."""
# Initialize a DataFrame to store Cramer's V values
cramers_v_df = pd.DataFrame(index=data.columns, columns=data.columns, data=np.nan)
# Compute Cramer's V for each pair of columns
for col1 in data.columns:
for col2 in data.columns:
if col1 != col2: # Avoid self-comparison
confusion_matrix = pd.crosstab(data[col1], data[col2])
chi2, p, dof, expected = chi2_contingency(confusion_matrix)
# Check if the p-value is less than the significance level
#if p < significance_level:
# cramers_v_df.at[col1, col2] = cramers_v(confusion_matrix)
# alternatively, you can use the following line to include all pairs
cramers_v_df.at[col1, col2] = cramers_v(confusion_matrix)
# Plot the heatmap
plt.figure(figsize=(12, 10), dpi=200)
mask = np.triu(np.ones_like(cramers_v_df, dtype=bool)) # Mask for the upper triangle
# make a max and min of the cmap
sns.heatmap(cramers_v_df, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, mask=mask, square=True)
plt.title(f"Heatmap of Cramér's V (p < {significance_level})")
return plt
class UAPVisualizer:
def __init__(self, data=None):
pass # Initialization can be added if needed
def analyze_and_predict(self, data, analyzers, col_names):
new_data = pd.DataFrame()
for i, (column, analyzer) in enumerate(zip(col_names, analyzers)):
new_data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_terms']
print(f"Cluster terms extracted for {column}")
new_data = new_data.fillna('null').astype('category')
data_nums = new_data.apply(lambda x: x.cat.codes)
for col in data_nums.columns:
try:
categories = new_data[col].cat.categories
x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
bst, accuracy, preds = self.train_xgboost(x_train, y_train, x_test, y_test, len(categories))
self.plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
except Exception as e:
print(f"Error processing {col}: {e}")
def train_xgboost(self, x_train, y_train, x_test, y_test, num_classes):
dtrain = xgb.DMatrix(x_train, label=y_train, enable_categorical=True)
dtest = xgb.DMatrix(x_test, label=y_test)
params = {'objective': 'multi:softmax', 'num_class': num_classes, 'max_depth': 6, 'eta': 0.3}
num_round = 100
bst = xgb.train(dtrain=dtrain, params=params, num_boost_round=num_round)
preds = bst.predict(dtest)
accuracy = accuracy_score(y_test, preds)
print(f"XGBoost trained with accuracy: {accuracy:.2f}")
return bst, accuracy, preds
def plot_results(self, new_data, bst, x_test, y_test, preds, categories, accuracy, col):
fig, axs = plt.subplots(1, 3, figsize=(25, 5))
fig.suptitle(f'{col.split(sep=".")[-1]} prediction', fontsize=35)
plot_importance(bst, ax=axs[0], importance_type='gain', show_values=False)
conf_matrix = confusion_matrix(y_test, preds)
sns.heatmap(conf_matrix, annot=True, fmt='g', cmap='Blues', xticklabels=categories, yticklabels=categories, ax=axs[1])
axs[1].set_title(f'Confusion Matrix\nAccuracy: {accuracy * 100:.2f}%')
sorted_features = sorted(bst.get_score(importance_type="gain").items(), key=lambda x: x[1], reverse=True)
most_important_feature = sorted_features[0][0]
contingency_table = pd.crosstab(new_data[col], new_data[most_important_feature])
chi2, p, dof, expected = chi2_contingency(contingency_table)
print(f"Chi-squared test for {col} and {most_important_feature}: p-value = {p}")
sns.heatmap(contingency_table, annot=True, cmap='Greens', ax=axs[2])
axs[2].set_title(f'Contingency Table between {col.split(sep=".")[-1]} and {most_important_feature.split(sep=".")[-1]}\np-value = {p}')
plt.tight_layout()
plt.savefig(f"{col}_{accuracy:.2f}_prediction_XGB.jpeg", dpi=300)
plt.show()
@staticmethod
def cramers_v(confusion_matrix):
chi2 = chi2_contingency(confusion_matrix)[0]
n = confusion_matrix.sum().sum()
phi2 = chi2 / n
r, k = confusion_matrix.shape
phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
r_corr = r - ((r-1)**2)/(n-1)
k_corr = k - ((k-1)**2)/(n-1)
return np.sqrt(phi2corr / min((k_corr-1), (r_corr-1)))
def plot_cramers_v_heatmap(self, data, significance_level=0.05):
cramers_v_df = pd.DataFrame(index=data.columns, columns=data.columns, data=np.nan)
for col1 in data.columns:
for col2 in data.columns:
if col1 != col2:
confusion_matrix = pd.crosstab(data[col1], data[col2])
chi2, p, dof, expected = chi2_contingency(confusion_matrix)
if p < significance_level:
cramers_v_df.at[col1, col2] = UAPVisualizer.cramers_v(confusion_matrix)
plt.figure(figsize=(10, 8)),# facecolor="black")
mask = np.triu(np.ones_like(cramers_v_df, dtype=bool))
#sns.set_theme(style="dark", rc={"axes.facecolor": "black", "grid.color": "white", "xtick.color": "white", "ytick.color": "white", "axes.labelcolor": "white", "axes.titlecolor": "white"})
# ax = sns.heatmap(cramers_v_df, annot=True, fmt=".1f", linewidths=.5, linecolor='white', cmap='coolwarm', annot_kws={"color":"white"}, cbar=True, mask=mask, square=True)
# Customizing the color of the ticks and labels to white
# plt.xticks(color='white')
# plt.yticks(color='white')
sns.heatmap(cramers_v_df, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, mask=mask, square=True)
plt.title(f"Heatmap of Cramér's V (p < {significance_level})")
plt.show()
def plot_treemap(self, df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
colors = list(mcolors.TABLEAU_COLORS.values())
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
coef = 0.8
font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
text.set_fontsize(font_size)
wrapped_text = textwrap.fill(text.get_text(), width=20)
text.set_text(wrapped_text)
plt.axis('off')
plt.gca().invert_yaxis()
plt.gcf().set_size_inches(20, 12)
plt.show()
class UAPParser:
def __init__(self, api_key, model="gpt-3.5-turbo-0125", col=None, format_long=None):
os.environ['OPENAI_API_KEY'] = api_key
self.client = OpenAI()
self.model = model
self.responses = {}
self.col = None
def fetch_response(self, description, format_long):
INITIAL_WAIT_TIME = 5
MAX_WAIT_TIME = 600
MAX_RETRIES = 10
wait_time = INITIAL_WAIT_TIME
for attempt in range(MAX_RETRIES):
try:
response = self.client.chat.completions.create(
model=self.model,
response_format={"type": "json_object"},
messages=[
{"role": "system", "content": "You are a helpful assistant which is tasked to assign a trustworthiness value between 0 and 100 to the given first-hand report."},
{"role": "user", "content": f'Input report: {description}\n\n Parse data following this json structure; leave missing data empty: {format_long} Output:'}
]
)
return response
except HTTPError as e:
if 'TooManyRequests' in str(e):
time.sleep(wait_time)
wait_time = min(wait_time * 2, MAX_WAIT_TIME) # Exponential backoff
else:
raise
except Exception as e:
print(f"Unexpected error: {e}")
break
return None # Return None if all retries fail
def process_descriptions(self, descriptions, format_long, max_workers=32):
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
future_to_desc = {executor.submit(self.fetch_response, desc, format_long): desc for desc in descriptions}
for future in stqdm(concurrent.futures.as_completed(future_to_desc), total=len(descriptions)):
desc = future_to_desc[future]
try:
response = future.result()
response_text = response.choices[0].message.content if response else None
if response_text:
self.responses[desc] = response_text
except Exception as exc:
print(f'Error occurred for description {desc}: {exc}')
def parse_responses(self):
parsed_responses = {}
not_parsed = 0
try:
for k, v in self.responses.items():
try:
parsed_responses[k] = json.loads(v)
except:
try:
parsed_responses[k] = json.loads(v.replace("'", '"'))
except:
not_parsed += 1
except Exception as e:
print(f"Error parsing responses: {e}")
print(f"Number of unparsed responses: {not_parsed}")
print(f"Number of parsed responses: {len(parsed_responses)}")
return parsed_responses
def responses_to_df(self, col, parsed_responses):
parsed_df = pd.DataFrame(parsed_responses).T
if col is not None:
parsed_df2 = pd.json_normalize(parsed_df[col])
parsed_df2.index = parsed_df.index
else:
parsed_df2 = pd.json_normalize(parsed_df)
parsed_df2.index = parsed_df.index
return parsed_df2
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
try:
modify = st.checkbox("Add filters on raw data")
except:
try:
modify = st.checkbox("Add filters on processed data")
except:
try:
modify = st.checkbox("Add filters on parsed data")
except:
pass
if not modify:
return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
for col in df_.columns:
if is_object_dtype(df_[col]):
try:
df_[col] = pd.to_datetime(df_[col])
except Exception:
try:
df_[col] = df_[col].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[col]):
df_[col] = df_[col].dt.tz_localize(None)
modification_container = st.container()
with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].unique(),
default=list(df_[column].unique()),
)
df_ = df_[df_[column].isin(user_cat_input)]
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
elif is_datetime64_any_dtype(df_[column]):
user_date_input = right.date_input(
f"Values for {column}",
value=(
df_[column].min(),
df_[column].max(),
),
)
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df_ = df_.loc[df_[column].between(start_date, end_date)]
else:
try: # To avoid multiple buttons with same ID
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
except:
try:
user_text_input = right.text_input(
f"Substring or regex {column}",
)
except Exception as e:
print(f'Error : {e}')
pass
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
def merge_clusters(df, column):
cluster_terms_ = df.__dict__['cluster_terms']
cluster_labels_ = df.__dict__['cluster_labels']
label_name_map = {label: cluster_terms_[label] for label in set(cluster_labels_)}
merge_map = {}
# Iterate over term pairs and decide on merging based on the distance
for idx, term1 in enumerate(cluster_terms_):
for jdx, term2 in enumerate(cluster_terms_):
if idx < jdx and distance(term1, term2) <= 3: # Adjust threshold as needed
# Decide to merge labels corresponding to jdx into labels corresponding to idx
# Find labels corresponding to jdx and idx
labels_to_merge = [label for label, term_index in enumerate(cluster_labels_) if term_index == jdx]
for label in labels_to_merge:
merge_map[label] = idx # Map the label to use the term index of term1
# Update the analyzer with the merged numeric labels
updated_cluster_labels_ = [merge_map[label] if label in merge_map else label for label in cluster_labels_]
df.__dict__['cluster_labels'] = updated_cluster_labels_
# Optional: Update string labels to reflect merged labels
updated_string_labels = [cluster_terms_[label] for label in updated_cluster_labels_]
df.__dict__['string_labels'] = updated_string_labels
return updated_string_labels
def analyze_and_predict(data, analyzers, col_names, clusters):
visualizer = UAPVisualizer()
new_data = pd.DataFrame()
for i, column in enumerate(col_names):
#new_data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_labels']
new_data[f'Analyzer_{column}'] = clusters[column]
data[f'Analyzer_{column}'] = clusters[column]
#data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_labels']
print(f"Cluster terms extracted for {column}")
for col in data.columns:
if 'Analyzer' in col:
data[col] = data[col].astype('category')
new_data = new_data.fillna('null').astype('category')
data_nums = new_data.apply(lambda x: x.cat.codes)
for col in data_nums.columns:
try:
categories = new_data[col].cat.categories
x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
bst, accuracy, preds = visualizer.train_xgboost(x_train, y_train, x_test, y_test, len(categories))
fig = visualizer.plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
with st.status(f"Charts Analyses: {col}", expanded=True) as status:
st.pyplot(fig)
status.update(label=f"Chart Processed: {col}", expanded=False)
except Exception as e:
print(f"Error processing {col}: {e}")
continue
return new_data, data
def main():
from config import API_KEY, GEMINI_KEY, FORMAT_LONG
with torch.no_grad():
torch.cuda.empty_cache()
st.set_page_config(
page_title="UAP ANALYSIS",
page_icon=":alien:",
layout="wide",
initial_sidebar_state="expanded",
)
st.title('UAP Analysis Dashboard')
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
# Load dataset
data_path = 'parsed_files_distance_embeds.h5'
parsed = load_data(data_path).drop(columns=['embeddings']).head(10000)
# Unparsed data
unparsed_tickbox = st.checkbox('Unparsed Data')
if unparsed_tickbox:
unparsed = st.file_uploader("Upload Raw DataFrame", type=["csv", "xlsx"])
if unparsed is not None:
try:
data = pd.read_csv(unparsed) if unparsed.type == "text/csv" else pd.read_excel(unparsed)
filtered_data = filter_dataframe(data)
st.dataframe(filtered_data)
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
modify_json = st.checkbox('Custom JSON')
API_KEY = st.text_input('OpenAI API Key', API_KEY, type='password', help="Enter your OpenAI API key")
if not API_KEY:
st.warning("Please enter your API key to proceed.")
if modify_json:
FORMAT_LONG = st.text_area('Custom JSON', FORMAT_LONG, height=500)
# If the DataFrame is successfully created, allow the user to select a column
col_unparsed = st.selectbox("Select column corresponding to text", data.columns)
if st.button("Process Column"):
selected_column_data = filtered_data[col_unparsed].tolist()
st.write("Column Data:", selected_column_data)
st.session_state.result = selected_column_data
if 'parsed_responses' not in st.session_state: # Button to trigger parsing of descriptions
with st.status(f"Parsing..", expanded=True) as status:
try:
st.write("Parsing descriptions...")
parser = UAPParser(api_key=API_KEY, model='gpt-3.5-turbo-0125', col=st.session_state.result)
#descriptions = unparsed['description'].tolist()
descriptions = st.session_state.result
format_long = FORMAT_LONG
parser.process_descriptions(descriptions, format_long)
parsed_responses = parser.parse_responses()
try:
responses_df = parser.responses_to_df('sightingDetails', parsed_responses)
except Exception as e:
status.update(label=f"Error parsing: {e}", state="error")
responses_df = parser.responses_to_df(None, parsed_responses)
st.dataframe(responses_df)
st.session_state['parsed_responses'] = responses_df.copy()
status.update(label="Parsing complete", expanded=False)
except Exception as e:
status.update(label=f"Parsing failed : {e}", state="error")
else:
# Prompt the user to upload a file if they haven't already
st.warning("Please upload a file to proceed.")
# Parsed data
parsed_tickbox = st.checkbox('Parsed Data')
if parsed_tickbox:
if 'parsed_responses' in st.session_state:
parsed_responses = filter_dataframe(st.session_state['parsed_responses'])
st.session_state['parsed_responses'] = parsed_responses
else:
parsed_responses = filter_dataframe(parsed)
st.session_state['parsed_responses'] = parsed_responses
col1, col2 = st.columns(2)
st.dataframe(parsed_responses)
with col1:
col_parsed = st.selectbox("Which column do you want to query?", st.session_state['parsed_responses'].columns)
with col2:
GEMINI_KEY = st.text_input('Gemini API Key', GEMINI_KEY, type='password', help="Enter your Gemini API key")
if col_parsed and GEMINI_KEY:
selected_column_data = st.session_state['parsed_responses'][col_parsed].tolist()
question = st.text_input("Ask a question or leave empty for summarization")
if st.button("Generate Query") and selected_column_data:
st.write(gemini_query(question, selected_column_data, GEMINI_KEY))
st.session_state['stage'] = 1
# Analyze data
if st.session_state.stage > 0 and st.session_state.stage < 10 and parsed_responses is not None:
columns_to_analyze = st.multiselect(
label='Select columns to analyze',
options=parsed_responses.columns
)
if columns_to_analyze:
analyzers = []
col_names = []
clusters = {}
for column in columns_to_analyze:
with torch.no_grad():
with st.status(f"Processing {column}", expanded=True) as status:
analyzer = UAPAnalyzer(parsed_responses, column)
st.write(f"Processing {column}...")
analyzer.preprocess_data(top_n=32)
st.write("Reducing dimensionality...")
analyzer.reduce_dimensionality(method='UMAP', n_components=2, n_neighbors=15, min_dist=0.1)
st.write("Clustering data...")
analyzer.cluster_data(method='HDBSCAN', min_cluster_size=15)
analyzer.get_tf_idf_clusters(top_n=1)
st.write("Naming clusters...")
analyzers.append(analyzer)
col_names.append(column)
clusters[column] = analyzer.merge_similar_clusters(cluster_terms=analyzer.__dict__['cluster_terms'], cluster_labels=analyzer.__dict__['cluster_labels'])
status.update(label=f"Processing {column} complete", expanded=False)
st.session_state['analyzers'] = analyzers
st.session_state['col_names'] = col_names
st.session_state['clusters'] = clusters
# save space
parsed = None
analyzers = None
col_names = None
clusters = None
if st.session_state['clusters'] is not None:
try:
new_data, parsed_responses = analyze_and_predict(parsed_responses, st.session_state['analyzers'], st.session_state['col_names'], st.session_state['clusters'])
st.session_state['dataset'] = parsed_responses
st.session_state['new_data'] = new_data
st.session_state['data_processed'] = True
except Exception as e:
st.write(f"Error processing data: {e}")
if st.session_state['data_processed']:
try:
visualizer = UAPVisualizer(data=st.session_state['new_data'])
#new_data = pd.DataFrame() # Assuming new_data is prepared earlier in the code
fig2 = visualizer.plot_cramers_v_heatmap(data=st.session_state['new_data'], significance_level=0.05)
with st.status(f"Cramer's V Chart", expanded=True) as statuss:
st.pyplot(fig2)
statuss.update(label="Cramer's V chart plotted", expanded=False)
except Exception as e:
st.write(f"Error plotting Cramers V: {e}")
for i, column in enumerate(st.session_state['col_names']):
#if stateful_button(f"Show {column} clusters {i}", key=f"show_{column}_clusters"):
if st.session_state['data_processed']:
with st.status(f"Show clusters {column}", expanded=True) as stats:
# plot_embeddings4(self, title=None, cluster_terms=None, cluster_labels=None, reduced_embeddings=None, column=None, data=None):
fig3 = st.session_state['analyzers'][i].plot_embeddings4(title=f"{column} clusters", cluster_terms=st.session_state['analyzers'][i].__dict__['cluster_terms'], cluster_labels=st.session_state['analyzers'][i].__dict__['cluster_labels'], reduced_embeddings=st.session_state['analyzers'][i].__dict__['reduced_embeddings'], column=f'Analyzer_{column}', data=st.session_state['new_data'])
stats.update(label=f"Show clusters {column} complete", expanded=False)
if st.session_state['data_processed']:
parsed2 = st.session_state.get('dataset', pd.DataFrame())
if parsed2 is not None:
st.session_state['stage'] = 10
parsed2 = filter_dataframe(parsed2)
col1, col2 = st.columns(2)
st.dataframe(parsed2)
with col1:
col_parsed2 = st.selectbox("Which columns do you want to query?", parsed2.columns)
with col2:
GEMINI_KEY = st.text_input('Gemini API Key', GEMINI_KEY, type='password', help="Enter Gemini API key")
if col_parsed and GEMINI_KEY:
selected_column_data2 = parsed2[col_parsed2].tolist()
question2 = st.text_input("Ask a question / leave empty for summarization")
if st.button("Generate Query") and selected_column_data2:
st.write(gemini_query(question2, selected_column_data2, GEMINI_KEY))
if __name__ == '__main__':
main()
#streamlit run streamlit_uap_clean.py --server.enableXsrfProtection=false --theme.primaryColor=#FFA500 --theme.base=dark |