File size: 19,617 Bytes
3e8cef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b5bde
 
3e8cef3
 
 
 
 
 
 
 
 
 
 
a0b5bde
 
3e8cef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b5bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8cef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05b73a
 
 
3e8cef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05b73a
3e8cef3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484

import streamlit as st
import pandas as pd
import cohere
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import json

st.set_option('deprecation.showPyplotGlobalUse', False)

from pandas.api.types import (
    is_categorical_dtype,
    is_datetime64_any_dtype,
    is_numeric_dtype,
    is_object_dtype,
)


def plot_treemap(df, column, top_n=32):
        # Get the value counts and the top N labels
        value_counts = df[column].value_counts()
        top_labels = value_counts.iloc[:top_n].index
        
        # Use np.where to replace all values not in the top N with 'Other'
        revised_column = f'{column}_revised'
        df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')

        # Get the value counts including the 'Other' category
        sizes = df[revised_column].value_counts().values
        labels = df[revised_column].value_counts().index

        # Get a gradient of colors
        # colors = list(mcolors.TABLEAU_COLORS.values())

        n_colors = len(sizes)
        colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]


        # Get % of each category
        percents = sizes / sizes.sum()

        # Prepare labels with percentages
        labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]

        fig, ax = plt.subplots(figsize=(20, 12))

        # Plot the treemap
        squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})

        ax = plt.gca()
        # Iterate over text elements and rectangles (patches) in the axes for color adjustment
        for text, rect in zip(ax.texts, ax.patches):
            background_color = rect.get_facecolor()
            r, g, b, _ = mcolors.to_rgba(background_color)
            brightness = np.average([r, g, b])
            text.set_color('white' if brightness < 0.5 else 'black')

            # Adjust font size based on rectangle's area and wrap long text
            coef = 0.8
            font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
            text.set_fontsize(font_size)
            wrapped_text = textwrap.fill(text.get_text(), width=20)
            text.set_text(wrapped_text)

        plt.axis('off')
        plt.gca().invert_yaxis()
        plt.gcf().set_size_inches(20, 12)

        fig.patch.set_alpha(0)

        ax.patch.set_alpha(0)
        return fig

def plot_hist(df, column, bins=10, kde=True):
        fig, ax = plt.subplots(figsize=(12, 6))
        sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
        # set the ticks and frame in orange
        ax.spines['bottom'].set_color('orange')
        ax.spines['top'].set_color('orange')
        ax.spines['right'].set_color('orange')
        ax.spines['left'].set_color('orange')
        ax.xaxis.label.set_color('orange')
        ax.yaxis.label.set_color('orange')
        ax.tick_params(axis='x', colors='orange')
        ax.tick_params(axis='y', colors='orange')
        ax.title.set_color('orange')

        # Set transparent background
        fig.patch.set_alpha(0)
        ax.patch.set_alpha(0)
        return fig


def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
    import matplotlib.cm as cm
    # Sort the dataframe by the date column
    df = df.sort_values(by=x_column)

    # Calculate rolling mean for each y_column
    if rolling_mean_value:
        df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()

    # Create the plot
    fig, ax = plt.subplots(figsize=figsize)

    colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))

    # Plot each y_column as a separate line with a different color
    for i, y_column in enumerate(y_columns):
        df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)

    # Rotate x-axis labels
    ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')

    # Format x_column as date if it is
    if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
        df[x_column] = pd.to_datetime(df[x_column]).dt.date

    # Set title, labels, and legend
    ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
    ax.set_xlabel(x_column, color=color)
    ax.set_ylabel(', '.join(y_columns), color=color)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')
    ax.title.set_color('orange')

    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)

    return fig


def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
    fig, ax = plt.subplots(figsize=figsize)

    sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)

    ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
    ax.set_xlabel(x_column, color=color)
    ax.set_ylabel(y_column, color=color)

    ax.tick_params(axis='x', colors=color)
    ax.tick_params(axis='y', colors=color)

    plt.xticks(rotation=rotation)

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')
    ax.title.set_color('orange')
    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    return fig

def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
    fig, ax = plt.subplots(figsize=figsize)

    width = 0.8 / len(x_columns)  # the width of the bars
    x = np.arange(len(df))  # the label locations

    for i, x_column in enumerate(x_columns):
        sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
        x += width  # add the width of the bar to the x position for the next bar

    ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
    ax.set_xlabel('Groups', color='orange')
    ax.set_ylabel(y_column, color='orange')

    ax.set_xticks(x - width * len(x_columns) / 2)
    ax.set_xticklabels(df.index)

    ax.tick_params(axis='x', colors='orange')
    ax.tick_params(axis='y', colors='orange')

    # Remove background
    fig.patch.set_alpha(0)
    ax.patch.set_alpha(0)
    ax.spines['bottom'].set_color('orange')
    ax.spines['top'].set_color('orange')
    ax.spines['right'].set_color('orange')
    ax.spines['left'].set_color('orange')
    ax.xaxis.label.set_color('orange')
    ax.yaxis.label.set_color('orange')
    ax.title.set_color('orange')
    ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')

    return fig


def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
    """
    Adds a UI on top of a dataframe to let viewers filter columns

    Args:
        df (pd.DataFrame): Original dataframe

    Returns:
        pd.DataFrame: Filtered dataframe
    """

    title_font = "Arial"
    body_font = "Arial"
    title_size = 32
    colors = ["red", "green", "blue"]
    interpretation = False
    extract_docx = False
    title = "My Chart"
    regex = ".*"
    img_path = 'default_image.png'

    df_ = df.copy()

#modification_container = st.container()

#with modification_container:
    to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)

    date_column = None
    filtered_columns = []

    for column in to_filter_columns:
        left, right = st.columns((1, 20))
        # Treat columns with < 200 unique values as categorical if not date or numeric
        if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
            user_cat_input = right.multiselect(
                f"Values for {column}",
                df_[column].value_counts().index.tolist(),
                default=list(df_[column].value_counts().index)
            )
            df_ = df_[df_[column].isin(user_cat_input)]
            filtered_columns.append(column)

            with st.status(f"Category Distribution: {column}", expanded=False) as stat:
                st.pyplot(plot_treemap(df_, column))

        elif is_numeric_dtype(df_[column]):
            _min = float(df_[column].min())
            _max = float(df_[column].max())
            step = (_max - _min) / 100
            user_num_input = right.slider(
                f"Values for {column}",
                min_value=_min,
                max_value=_max,
                value=(_min, _max),
                step=step,
            )
            df_ = df_[df_[column].between(*user_num_input)]
            filtered_columns.append(column)

            # Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
            #      colors, interpretation, extract_docx, img_path)

            with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
                st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))

        elif is_object_dtype(df_[column]):
            try:
                df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
            except Exception:
                try:
                    df_[column] = df_[column].apply(parser.parse)
                except Exception:
                    pass

            if is_datetime64_any_dtype(df_[column]):
                df_[column] = df_[column].dt.tz_localize(None)
                min_date = df_[column].min().date()
                max_date = df_[column].max().date()
                user_date_input = right.date_input(
                    f"Values for {column}",
                    value=(min_date, max_date),
                    min_value=min_date,
                    max_value=max_date,
                )
                # if len(user_date_input) == 2:
                #     start_date, end_date = user_date_input
                #     df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
                if len(user_date_input) == 2:
                    user_date_input = tuple(map(pd.to_datetime, user_date_input))
                    start_date, end_date = user_date_input
                    
                    # Determine the most appropriate time unit for plot
                    time_units = {
                        'year': df_[column].dt.year,
                        'month': df_[column].dt.to_period('M'),
                        'day': df_[column].dt.date
                    }
                    unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
                    closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))

                    # Group by the most appropriate time unit and count occurrences
                    grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
                    grouped.columns = [column, 'count']

                    # Create a complete date range
                    if closest_to_36 == 'year':
                        date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
                    elif closest_to_36 == 'month':
                        date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
                    else:  # day
                        date_range = pd.date_range(start=start_date, end=end_date, freq='D')

                    # Create a DataFrame with the complete date range
                    complete_range = pd.DataFrame({column: date_range})

                    # Convert the date column to the appropriate format based on closest_to_36
                    if closest_to_36 == 'year':
                        complete_range[column] = complete_range[column].dt.year
                    elif closest_to_36 == 'month':
                        complete_range[column] = complete_range[column].dt.to_period('M')

                    # Merge the complete range with the grouped data
                    final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)

                    with st.status(f"Date Distributions: {column}", expanded=False) as stat:
                        try:
                            st.pyplot(plot_bar(final_data, column, 'count'))
                        except Exception as e:
                            st.error(f"Error plotting bar chart: {e}")
                    df_ = df_.loc[df_[column].between(start_date, end_date)]

                date_column = column

                if date_column and filtered_columns:
                    numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
                    if numeric_columns:
                        fig = plot_line(df_, date_column, numeric_columns)
                        with st.status(f"Date Numerical Distributions: {column}", expanded=False) as stat:
                                                try:
                                                    st.pyplot(fig)
                                                except Exception as e:
                                                    st.error(f"Error plotting line chart: {e}")
                                                    pass                    # now to deal with categorical columns
                    categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
                    if categorical_columns:
                        fig2 = plot_grouped_bar(df_, categorical_columns, date_column)
                        with st.status(f"Date Categorical Distributions: {column}", expanded=False) as sta:
                            try:
                                st.pyplot(fig2)
                            except Exception as e:
                                st.error(f"Error plotting bar chart: {e}")

        else:
            user_text_input = right.text_input(
                f"Substring or regex in {column}",
            )
            if user_text_input:
                df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
    # write len of df after filtering with % of original
    st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
    return df_


# Initialize session state
if 'analyzers' not in st.session_state:
    st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
    st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
    st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
    st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
    st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
    st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
    st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
    st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
    st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
    st.session_state['parsed_responses'] = None
if 'json_format' not in st.session_state:
    st.session_state['json_format'] = None
if 'api_key_valid' not in st.session_state:
    st.session_state['api_key_valid'] = False
if 'previous_api_key' not in st.session_state:
    st.session_state['previous_api_key'] = None

OPENAI_KEY = st.secrets["OPENAI_KEY"]
GEMINI_KEY = st.secrets["GEMINI_KEY"]
COHERE_KEY = st.secrets["COHERE_KEY"]

def load_data(file_path, key='df'):
    return pd.read_hdf(file_path, key=key)


datasett = st.file_uploader("Upload Raw DataFrame", type=["csv", "xlsx"])
if datasett is not None:
    try:
        data = pd.read_csv(datasett) if datasett.type == "text/csv" else pd.read_excel(datasett)
        filtered_data = filter_dataframe(data)
        st.session_state['parsed_responses'] = filtered_data
        st.dataframe(filtered_data)
    except Exception as e:
        st.error(f"An error occurred while reading the file: {e}")

    col1, col2 = st.columns(2)
    with col1:
        columns_to_query = st.multiselect(
        label='Select columns to analyze',
        options=st.session_state['parsed_responses'].columns)
    with col2:
        COHERE_KEY = st.text_input('Cohere APIs Key', COHERE_KEY, type='password', help="Enter your Cohere API key")
    
    question = st.text_input("Ask a question")

    if st.session_state['parsed_responses'] is not None and question and COHERE_KEY:
        co = cohere.Client(api_key = COHERE_KEY)
        documents = st.session_state['parsed_responses'][columns_to_query].to_dict('records')
        json_documents = [json.dumps(doc) for doc in documents]
        try:
            results = co.rerank(
                model="rerank-english-v3.0",
                query=question,
                documents=json_documents,
                top_n=5,
                return_documents=True
            )
            
            st.subheader("Reranked Results:")
            # Create a new dataframe with reranked results
            reranked_indices = [result.index for result in results.results]
            reranked_scores = [result.relevance_score for result in results.results]
            
            reranked_df = st.session_state['parsed_responses'].iloc[reranked_indices].copy()
            reranked_df['relevance_score'] = reranked_scores
            reranked_df['rank'] = range(1, len(reranked_indices) + 1)
            
            # Set the new index to be the rank
            reranked_df.set_index('rank', inplace=True)
            
            # Display the reranked dataframe
            st.dataframe(reranked_df)

            # markdown format
            #for idx, result in enumerate(results.results, 1):
            #    st.write(f"Result {idx}:")
            #    st.write(f"Index: {result.index}")
            #    st.write(f"Relevance Score: {result.relevance_score}")
            #    st.write(f"Document: {json.loads(json_documents[result.index])}")
            #    st.write("---")
                
        except Exception as e:
            st.error(f"An error occurred during reranking: {e}")