File size: 46,592 Bytes
c6253d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
# from cuml.manifold import umap
# from cuml.cluster import hdbscan
import umap
import fast_hdbscan as hdbscan
import plotly.graph_objects as go
from sentence_transformers import SentenceTransformer
import torch
with torch.no_grad():
    embed_model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2')
    embed_model.to('cuda')
from sentence_transformers.util import pytorch_cos_sim, pairwise_cos_sim
#from stqdm.notebook import stqdm
#stqdm.pandas()
import logging
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
import plotly.graph_objects as go
import plotly.express as px
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
import numpy as np
from Levenshtein import distance
import logging
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import plot_importance
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, confusion_matrix
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.mosaicplot import mosaic
import pickle
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import xgboost as xgb
from xgboost import plot_importance
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, confusion_matrix
from scipy.stats import chi2_contingency
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.graphics.mosaicplot import mosaic
from statsmodels.api import stats
import os
import time
import concurrent.futures
from requests.exceptions import HTTPError
from stqdm import stqdm
stqdm.pandas()
import json
import pandas as pd
from openai import OpenAI
import numpy as np
import matplotlib.pyplot as plt
import squarify
import matplotlib.colors as mcolors
import textwrap
import pandas as pd
import streamlit as st
st.set_option('deprecation.showPyplotGlobalUse', False)


# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class UAPAnalyzer:
    """
    A class for analyzing and clustering textual data within a pandas DataFrame using 
    Natural Language Processing (NLP) techniques and machine learning models.
    
    Attributes:
        data (pd.DataFrame): The dataset containing textual data for analysis.
        column (str): The name of the column in the DataFrame to be analyzed.
        embeddings (np.ndarray): The vector representations of textual data.
        reduced_embeddings (np.ndarray): The dimensionality-reduced embeddings.
        cluster_labels (np.ndarray): The labels assigned to each data point after clustering.
        cluster_terms (list): The list of terms associated with each cluster.
        tfidf_matrix (sparse matrix): The Term Frequency-Inverse Document Frequency (TF-IDF) matrix.
        models (dict): A dictionary to store trained machine learning models.
        evaluations (dict): A dictionary to store evaluation results of models.
        data_nums (pd.DataFrame): The DataFrame with numerical encoding of categorical data.
    """

    def __init__(self, data, column, has_embeddings=False):
        """
        Initializes the UAPAnalyzer with a dataset and a specified column for analysis.
        
        Args:
            data (pd.DataFrame): The dataset for analysis.
            column (str): The column within the dataset to analyze.
        """
        assert isinstance(data, pd.DataFrame), "Data must be a pandas DataFrame"
        assert column in data.columns, f"Column '{column}' not found in DataFrame"
        self.has_embeddings = has_embeddings        
        self.data = data
        self.column = column
        self.embeddings = None
        self.reduced_embeddings = None
        self.cluster_labels = None
        self.cluster_names = None
        self.cluster_terms = None 
        self.cluster_terms_embeddings = None
        self.tfidf_matrix = None
        self.models = {}  # To store trained models
        self.evaluations = {}  # To store evaluation results
        self.data_nums = None  # Encoded numerical data
        self.x_train = None
        self.y_train = None
        self.x_test = None
        self.y_test = None
        self.preds = None
        self.new_dataset = None
        self.model = embed_model
        self.model = self.model.to('cuda')
        #self.cluster_names_ = pd.DataFrame()

        logging.info("UAPAnalyzer initialized")

    def preprocess_data(self, trim=False, has_embeddings=False, top_n=32,):
        """
        Preprocesses the data by optionally trimming the dataset to include only the top N labels and extracting embeddings.
        
        Args:
            trim (bool): Whether to trim the dataset to include only the top N labels.
            top_n (int): The number of top labels to retain if trimming is enabled.
        """
        logging.info("Preprocessing data")

        # if trim is True
        if trim:
            # Identify the top labels based on value counts
            top_labels = self.data[self.column].value_counts().nlargest(top_n).index.tolist()
            # Revise the column data, setting values to 'Other' if they are not in the top labels
            self.data[f'{self.column}_revised'] = np.where(self.data[self.column].isin(top_labels), self.data[self.column], 'Other')
        # Convert the column data to string type before passing to _extract_embeddings
        # This is useful especially if the data type of the column is not originally string
        string_data = self.data[f'{self.column}'].astype(str)
        # Extract embeddings from the revised and string-converted column data
        if has_embeddings:
            self.embeddings = self.data['embeddings'].to_list()
        else:
            self.embeddings = self._extract_embeddings(string_data)
        logging.info("Data preprocessing complete")


    def _extract_embeddings(self, data_column):
        """
        Extracts embeddings from the given data column.
        
        Args:
            data_column (pd.Series): The column from which to extract embeddings.
        
        Returns:
            np.ndarray: The extracted embeddings.
        """
        logging.info("Extracting embeddings")
        # convert to str
        return embed_model.encode(data_column.tolist(), show_progress_bar=True)

    def reduce_dimensionality(self, method='UMAP', n_components=2, **kwargs):
        """
        Reduces the dimensionality of embeddings using specified method.
        
        Args:
            method (str): The dimensionality reduction method to use ('UMAP' or 'PCA').
            n_components (int): The number of dimensions to reduce to.
            **kwargs: Additional keyword arguments for the dimensionality reduction method.
        """
        logging.info(f"Reducing dimensionality using {method}")
        if method == 'UMAP':
            reducer = umap.UMAP(n_components=n_components, **kwargs)
        elif method == 'PCA':
            reducer = PCA(n_components=n_components)
        else:
            raise ValueError("Unsupported dimensionality reduction method")
        
        self.reduced_embeddings = reducer.fit_transform(self.embeddings)
        logging.info(f"Dimensionality reduced using {method}")

    def cluster_data(self, method='HDBSCAN', **kwargs):
        """
        Clusters the reduced dimensionality data using the specified clustering method.
        
        Args:
            method (str): The clustering method to use ('HDBSCAN' or 'KMeans').
            **kwargs: Additional keyword arguments for the clustering method.
        """
        logging.info(f"Clustering data using {method}")
        if method == 'HDBSCAN':
            clusterer = hdbscan.HDBSCAN(**kwargs)
        elif method == 'KMeans':
            clusterer = KMeans(**kwargs)
        else:
            raise ValueError("Unsupported clustering method")
        
        clusterer.fit(self.reduced_embeddings)
        self.cluster_labels = clusterer.labels_
        logging.info(f"Data clustering complete using {method}")

        
    def get_tf_idf_clusters(self, top_n=2):
        """
        Names clusters using the most frequent terms based on TF-IDF analysis.

        Args:
            top_n (int): The number of top terms to consider for naming each cluster.
        """
        logging.info("Naming clusters based on top TF-IDF terms.")

        # Ensure data has been clustered
        assert self.cluster_labels is not None, "Data has not been clustered yet."
        vectorizer = TfidfVectorizer(max_features=1000, stop_words='english')

        # Fit the vectorizer to the text data and transform it into a TF-IDF matrix
        tfidf_matrix = vectorizer.fit_transform(self.data[f'{self.column}'].astype(str))

        # Initialize an empty list to store the cluster terms
        self.cluster_terms = []

        for cluster_id in np.unique(self.cluster_labels):
            # Skip noise if present (-1 in HDBSCAN)
            if cluster_id == -1:
                continue

            # Find indices of documents in the current cluster
            indices = np.where(self.cluster_labels == cluster_id)[0]

            # Compute the mean TF-IDF score for each term in the cluster
            cluster_tfidf_mean = np.mean(tfidf_matrix[indices], axis=0)

            # Use the matrix directly for indexing if it does not support .toarray()
            # Ensure it's in a format that supports indexing, convert if necessary
            if hasattr(cluster_tfidf_mean, "toarray"):
                dense_mean = cluster_tfidf_mean.toarray().flatten()
            else:
                dense_mean = np.asarray(cluster_tfidf_mean).flatten()

            # Get the indices of the top_n terms
            top_n_indices = np.argsort(dense_mean)[-top_n:]

            # Get the corresponding terms for these top indices
            terms = vectorizer.get_feature_names_out()
            top_terms = [terms[i] for i in top_n_indices]

            # Join the top_n terms with a hyphen
            cluster_name = '-'.join(top_terms)

            # Append the cluster name to the list
            self.cluster_terms.append(cluster_name)

        # Convert the list of cluster terms to a categorical data type
        self.cluster_terms = pd.Categorical(self.cluster_terms)
        logging.info("Cluster naming completed.")

    def merge_similar_clusters(self, distance='cosine', char_diff_threshold = 3, similarity_threshold = 0.92, embeddings = 'SBERT'):
        """
        Merges similar clusters based on cosine similarity of their associated terms.
        
        Args:
            similarity_threshold (float): The similarity threshold above which clusters are considered similar enough to merge.
        """
        from collections import defaultdict
        logging.info("Merging similar clusters")

        # A mapping from cluster names to a set of cluster names to be merged
        merge_mapping = defaultdict(set)
        merge_labels = defaultdict(set)

        if distance == 'levenshtein':
            distances = {}
            for i, name1 in enumerate(self.cluster_terms):
                for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
                    dist = distance(name1, name2)
                    if dist <= char_diff_threshold:
                        logging.info(f"Merging '{name2}' into '{name1}'")
                        merge_mapping[name1].add(name2)

        elif distance == 'cosine':
            self.cluster_terms_embeddings = embed_model.encode(self.cluster_terms)
            cos_sim_matrix = pytorch_cos_sim(self.cluster_terms_embeddings, self.cluster_terms_embeddings)
            for i, name1 in enumerate(self.cluster_terms):
                for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
                    if cos_sim_matrix[i][j] > similarity_threshold:
                        #st.write(f"Merging cluster '{name2}' into cluster '{name1}' based on cosine similarity")
                        logging.info(f"Merging cluster '{name2}' into cluster '{name1}' based on cosine similarity")
                        merge_mapping[name1].add(name2)


        # Flatten the merge mapping to a simple name change mapping
        name_change_mapping = {}
        for cluster_name, merges in merge_mapping.items():
            for merge_name in merges:
                name_change_mapping[merge_name] = cluster_name

        # Update cluster labels based on name changes
        updated_cluster_terms = []
        original_to_updated_index = {}
        for i, name in enumerate(self.cluster_terms):
            updated_name = name_change_mapping.get(name, name)
            if updated_name not in updated_cluster_terms:
                updated_cluster_terms.append(updated_name)
                original_to_updated_index[i] = len(updated_cluster_terms) - 1
            else:
                updated_index = updated_cluster_terms.index(updated_name)
                original_to_updated_index[i] = updated_index

        self.cluster_terms = updated_cluster_terms  # Update cluster terms with merged names
        self.clusters_labels = np.array([original_to_updated_index[label] for label in self.cluster_labels])


        # Update cluster labels according to the new index mapping
        # self.cluster_labels = np.array([original_to_updated_index[label] if label in original_to_updated_index else -1 for label in self.cluster_labels])
        # self.cluster_terms = [self.cluster_terms[original_to_updated_index[label]] if label != -1 else 'Noise' for label in self.cluster_labels]

        # Log the total number of merges
        total_merges = sum(len(merges) for merges in merge_mapping.values())
        logging.info(f"Total clusters merged: {total_merges}")

        unique_labels = np.unique(self.cluster_labels)
        label_to_index = {label: index for index, label in enumerate(unique_labels)}
        self.cluster_labels = np.array([label_to_index[label] for label in self.cluster_labels])
        self.cluster_terms = [self.cluster_terms[label_to_index[label]] for label in self.cluster_labels]

    def merge_similar_clusters2(self, distance='cosine', char_diff_threshold=3, similarity_threshold=0.92):
        logging.info("Merging similar clusters based on distance: {}".format(distance))
        from collections import defaultdict
        merge_mapping = defaultdict(set)

        if distance == 'levenshtein':
            for i, name1 in enumerate(self.cluster_terms):
                for j, name2 in enumerate(self.cluster_terms[i + 1:], start=i + 1):
                    dist = distance(name1, name2)
                    if dist <= char_diff_threshold:
                        merge_mapping[name1].add(name2)
                        logging.info(f"Merging '{name2}' into '{name1}' based on Levenshtein distance")

        elif distance == 'cosine':
            if self.cluster_terms_embeddings is None:
                self.cluster_terms_embeddings = embed_model.encode(self.cluster_terms)
            cos_sim_matrix = pytorch_cos_sim(self.cluster_terms_embeddings, self.cluster_terms_embeddings)
            for i in range(len(self.cluster_terms)):
                for j in range(i + 1, len(self.cluster_terms)):
                    if cos_sim_matrix[i][j] > similarity_threshold:
                        merge_mapping[self.cluster_terms[i]].add(self.cluster_terms[j])
                        #st.write(f"Merging cluster '{self.cluster_terms[j]}' into cluster '{self.cluster_terms[i]}'")
                        logging.info(f"Merging cluster '{self.cluster_terms[j]}' into cluster '{self.cluster_terms[i]}'")

        self._update_cluster_terms_and_labels(merge_mapping)

    def _update_cluster_terms_and_labels(self, merge_mapping):
        # Flatten the merge mapping to a simple name change mapping
        name_change_mapping = {old: new for new, olds in merge_mapping.items() for old in olds}
        # Update cluster terms and labels
        unique_new_terms = list(set(name_change_mapping.values()))
        # replace the old terms with the new terms (name2) otherwise, keep the old terms (name1)
        # self.cluster_terms = [name_change_mapping.get(term, term) for term in self.cluster_terms]
        # self.cluster_labels = np.array([unique_new_terms.index(term) if term in unique_new_terms else term for term in self.cluster_terms])
        self.cluster_terms = [name_change_mapping.get(term, term) for term in self.cluster_terms]
        self.cluster_labels = [unique_new_terms.index(term) if term in unique_new_terms else -1 for term in self.cluster_terms]

        logging.info(f"Total clusters merged: {len(merge_mapping)}")


    def cluster_levenshtein(self, cluster_terms, cluster_labels, char_diff_threshold=3):
        from Levenshtein import distance  # Make sure to import the correct distance function

        merge_map = {}
        # Iterate over term pairs and decide on merging based on the distance
        for idx, term1 in enumerate(cluster_terms):
            for jdx, term2 in enumerate(cluster_terms):
                if idx < jdx and distance(term1, term2) <= char_diff_threshold:  
                    labels_to_merge = [label for label, term_index in enumerate(cluster_labels) if term_index == jdx]
                    for label in labels_to_merge:
                        merge_map[label] = idx  # Map the label to use the term index of term1
                    logging.info(f"Merging '{term2}' into '{term1}'")
                    st.write(f"Merging '{term2}' into '{term1}'")
        # Update the cluster labels
        updated_cluster_labels = [merge_map.get(label, label) for label in cluster_labels]
        # Update string labels to reflect merged labels
        updated_string_labels = [cluster_terms[label] for label in updated_cluster_labels]
        return updated_string_labels

    def cluster_cosine(self, cluster_terms, cluster_labels, similarity_threshold):
        from sklearn.metrics.pairwise import cosine_similarity
        cluster_terms_embeddings = embed_model.encode(cluster_terms)
        # Compute cosine similarity matrix in a vectorized form
        cos_sim_matrix = cosine_similarity(cluster_terms_embeddings, cluster_terms_embeddings)

        merge_map = {}
        n_terms = len(cluster_terms)
        # Iterate only over upper triangular matrix excluding diagonal to avoid redundant computations and self-comparison
        for idx in range(n_terms):
            for jdx in range(idx + 1, n_terms):
                if cos_sim_matrix[idx, jdx] >= similarity_threshold:
                    labels_to_merge = [label for label, term_index in enumerate(cluster_labels) if term_index == jdx]
                    for label in labels_to_merge:
                        merge_map[label] = idx
                    st.write(f"Merging '{cluster_terms[jdx]}' into '{cluster_terms[idx]}'")
                    logging.info(f"Merging '{cluster_terms[jdx]}' into '{cluster_terms[idx]}'")
        # Update the cluster labels
        updated_cluster_labels = [merge_map.get(label, label) for label in cluster_labels]
        # Update string labels to reflect merged labels
        updated_string_labels = [cluster_terms[label] for label in updated_cluster_labels]
        # make a dataframe with index, cluster label and cluster term
        return updated_string_labels

    def merge_similar_clusters(self, cluster_terms, cluster_labels, distance_type='cosine', char_diff_threshold=3, similarity_threshold=0.92):
        if distance_type == 'levenshtein':
            return self.cluster_levenshtein(cluster_terms, cluster_labels, char_diff_threshold)
        elif distance_type == 'cosine':
            return self.cluster_cosine(cluster_terms, cluster_labels, similarity_threshold)

    def plot_embeddings2(self, title=None):
        assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
        assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."

        logging.info("Plotting embeddings with TF-IDF colors")

        fig = go.Figure()

        unique_cluster_terms = np.unique(self.cluster_terms)

        for cluster_term in unique_cluster_terms:
            if cluster_term != 'Noise':
                indices = np.where(np.array(self.cluster_terms) == cluster_term)[0]

                # Plot points in the current cluster
                fig.add_trace(
                    go.Scatter(
                        x=self.reduced_embeddings[indices, 0],
                        y=self.reduced_embeddings[indices, 1],
                        mode='markers',
                        marker=dict(
                            size=5,
                            opacity=0.8,
                        ),
                        name=cluster_term,
                        text=self.data[f'{self.column}'].iloc[indices], 
                        hoverinfo='text',
                    )
                )
            else:
                # Plot noise points differently if needed
                fig.add_trace(
                    go.Scatter(
                        x=self.reduced_embeddings[indices, 0],
                        y=self.reduced_embeddings[indices, 1],
                        mode='markers',
                        marker=dict(
                            size=5,
                            opacity=0.5,
                            color='grey'
                        ),
                        name='Noise',
                        text=[self.data[f'{self.column}'][i] for i in indices],  # Adjusted for potential pandas use
                        hoverinfo='text',
                    )
                )
            # else:
            #     indices = np.where(np.array(self.cluster_terms) == 'Noise')[0]

            #     # Plot noise points
            #     fig.add_trace(
            #         go.Scatter(
            #             x=self.reduced_embeddings[indices, 0],
            #             y=self.reduced_embeddings[indices, 1],
            #             mode='markers',
            #             marker=dict(
            #                 size=5,
            #                 opacity=0.8,
            #             ),
            #             name='Noise',
            #             text=self.data[f'{self.column}'].iloc[indices],
            #             hoverinfo='text',
            #         )
            #     )

        fig.update_layout(title=title, showlegend=True, legend_title_text='Top TF-IDF Terms')
        #return fig
        st.plotly_chart(fig, use_container_width=True)  
       #fig.show()
        #logging.info("Embeddings plotted with TF-IDF colors")

    def plot_embeddings3(self, title=None):
        assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
        assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."

        logging.info("Plotting embeddings with TF-IDF colors")

        fig = go.Figure()

        unique_cluster_terms = np.unique(self.cluster_terms)

        terms_order = {term: i for i, term in enumerate(np.unique(self.cluster_terms, return_index=True)[0])}
        #indices = np.argsort([terms_order[term] for term in self.cluster_terms])

        # Handling color assignment, especially for noise
        colors = {term: ('grey' if term == 'Noise' else None) for term in unique_cluster_terms}
        color_map = px.colors.qualitative.Plotly  # Default color map from Plotly Express for consistency

        # Apply a custom color map, handling 'Noise' specifically
        color_idx = 0
        for cluster_term in unique_cluster_terms:
            indices = np.where(np.array(self.cluster_terms) == cluster_term)[0]
            if cluster_term != 'Noise':
                marker_color = color_map[color_idx % len(color_map)]
                color_idx += 1
            else:
                marker_color = 'grey'

            fig.add_trace(
                go.Scatter(
                    x=self.reduced_embeddings[indices, 0],
                    y=self.reduced_embeddings[indices, 1],
                    mode='markers',
                    marker=dict(
                        size=5,
                        opacity=(0.5 if cluster_term == 'Noise' else 0.8),
                        color=marker_color
                    ),
                    name=cluster_term,
                    text=self.data[f'{self.column}'].iloc[indices],
                    hoverinfo='text'
                )
            )
        fig.data = sorted(fig.data, key=lambda trace: terms_order[trace.name])
        fig.update_layout(title=title if title else "Embeddings Visualized", showlegend=True, legend_title_text='Top TF-IDF Terms')
        st.plotly_chart(fig, use_container_width=True)


    def plot_embeddings(self, title=None):
        """
        Plots the reduced dimensionality embeddings with clusters indicated.
        
        Args:
            title (str): The title of the plot.
        """
        # Ensure dimensionality reduction and TF-IDF based cluster naming have been performed
        assert self.reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
        assert self.cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."

        logging.info("Plotting embeddings with TF-IDF colors")
        
        fig = go.Figure()
        
        #for i, term in enumerate(self.cluster_terms):
            # Indices of points in the current cluster
        #unique_cluster_ids = np.unique(self.cluster_labels[self.cluster_labels != -1])  # Exclude noise
        unique_cluster_terms = np.unique(self.cluster_terms)
        unique_cluster_labels = np.unique(self.cluster_labels)
            
        for i, (cluster_id, cluster_terms) in enumerate(zip(unique_cluster_labels, unique_cluster_terms)):
            indices = np.where(self.cluster_labels == cluster_id)[0]
            #indices = np.where(self.cluster_labels == i)[0]
            
            # Plot points in the current cluster
            fig.add_trace(
                go.Scatter(
                    x=self.reduced_embeddings[indices, 0],
                    y=self.reduced_embeddings[indices, 1],
                    mode='markers',
                    marker=dict(
                        #color=i,
                        #colorscale='rainbow',
                        size=5,
                        opacity=0.8,
                    ),
                    name=cluster_terms,
                    text=self.data[f'{self.column}'].iloc[indices],
                    hoverinfo='text',
                )
            )
            
        
        fig.update_layout(title=title, showlegend=True, legend_title_text='Top TF-IDF Terms')
        st.plotly_chart(fig, use_container_width=True)
        logging.info("Embeddings plotted with TF-IDF colors")

    def plot_embeddings4(self, title=None, cluster_terms=None, cluster_labels=None, reduced_embeddings=None, column=None, data=None):
        """
        Plots the reduced dimensionality embeddings with clusters indicated.
        
        Args:
            title (str): The title of the plot.
        """
        # Ensure dimensionality reduction and TF-IDF based cluster naming have been performed
        assert reduced_embeddings is not None, "Dimensionality reduction has not been performed yet."
        assert cluster_terms is not None, "Cluster TF-IDF analysis has not been performed yet."

        logging.info("Plotting embeddings with TF-IDF colors")
        
        fig = go.Figure()
        
        # Determine unique cluster IDs and terms, and ensure consistent color mapping
        unique_cluster_ids = np.unique(cluster_labels)
        unique_cluster_terms = [cluster_terms[i] for i in unique_cluster_ids]#if i != -1]  # Exclude noise by ID

        color_map = px.colors.qualitative.Plotly  # Using Plotly Express's qualitative colors for consistency
        color_idx = 0
        
        # Map each cluster ID to a color
        cluster_colors = {}
        for cid in unique_cluster_ids:
            #if cid != -1:  # Exclude noise
                cluster_colors[cid] = color_map[color_idx % len(color_map)]
                color_idx += 1
            #else:
            #    cluster_colors[cid] = 'grey'  # Noise or outliers in grey

        for cluster_id, cluster_term in zip(unique_cluster_ids, unique_cluster_terms):
            indices = np.where(cluster_labels == cluster_id)[0]
            fig.add_trace(
                go.Scatter(
                    x=reduced_embeddings[indices, 0],
                    y=reduced_embeddings[indices, 1],
                    mode='markers',
                    marker=dict(
                        color=cluster_colors[cluster_id],
                        size=5,
                        opacity=0.8#if cluster_id != -1 else 0.5,
                    ),
                    name=cluster_term,
                    text=data[column].iloc[indices],  # Use the original column for hover text
                    hoverinfo='text',
                )
            )
            
        fig.update_layout(
            title=title if title else "Embeddings Visualized",
            showlegend=True,
            legend_title_text='Top TF-IDF Terms',
            legend=dict(
                traceorder='normal',  # 'normal' or 'reversed'; ensures that traces appear in the order they are added
                itemsizing='constant'
            )
        )
        st.plotly_chart(fig, use_container_width=True)
        logging.info("Embeddings plotted with TF-IDF colors")


logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

def analyze_and_predict(data, analyzers, col_names):
    """
    Performs analysis on the data using provided analyzers and makes predictions on specified columns.

    Args:
        data (pd.DataFrame): The dataset for analysis.
        analyzers (list): A list of UAPAnalyzer instances.
        col_names (list): Column names to be analyzed and predicted.
    """
    new_data = pd.DataFrame()
    for i, (column, analyzer) in enumerate(zip(col_names, analyzers)):
        new_data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_terms']
        logging.info(f"Cluster terms extracted for {column}")

    new_data = new_data.fillna('null').astype('category')
    data_nums = new_data.apply(lambda x: x.cat.codes)

    for col in data_nums.columns:
        try:
            categories = new_data[col].cat.categories
            x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
            bst, accuracy, preds = train_xgboost(x_train, y_train, x_test, y_test, len(categories))
            plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
        except Exception as e:
            logging.error(f"Error processing {col}: {e}")
    return new_data

def train_xgboost(x_train, y_train, x_test, y_test, num_classes):
    """
    Trains an XGBoost model and evaluates its performance.

    Args:
        x_train (pd.DataFrame): Training features.
        y_train (pd.Series): Training labels.
        x_test (pd.DataFrame): Test features.
        y_test (pd.Series): Test labels.
        num_classes (int): The number of unique classes in the target variable.

    Returns:
        bst (Booster): The trained XGBoost model.
        accuracy (float): The accuracy of the model on the test set.
    """
    dtrain = xgb.DMatrix(x_train, label=y_train, enable_categorical=True)
    dtest = xgb.DMatrix(x_test, label=y_test)

    params = {'device':'cuda', 'objective': 'multi:softmax', 'num_class': num_classes, 'max_depth': 6, 'eta': 0.3}
    num_round = 100
    bst = xgb.train(dtrain=dtrain, params=params, num_boost_round=num_round)
    preds = bst.predict(dtest)
    accuracy = accuracy_score(y_test, preds)

    logging.info(f"XGBoost trained with accuracy: {accuracy:.2f}")
    return bst, accuracy, preds

def plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col):
    """
    Plots the feature importance, confusion matrix, and contingency table.

    Args:
        bst (Booster): The trained XGBoost model.
        x_test (pd.DataFrame): Test features.
        y_test (pd.Series): Test labels.
        preds (np.array): Predictions made by the model.
        categories (Index): Category names for the target variable.
        accuracy (float): The accuracy of the model on the test set.
        col (str): The target column name being analyzed and predicted.
    """
    fig, axs = plt.subplots(1, 3, figsize=(25, 5), dpi=300)
    fig.suptitle(f'{col.split(sep=".")[-1]} prediction', fontsize=35)

    plot_importance(bst, ax=axs[0], importance_type='gain', show_values=False)
    conf_matrix = confusion_matrix(y_test, preds)
    sns.heatmap(conf_matrix, annot=True, fmt='g', cmap='Blues', xticklabels=categories, yticklabels=categories, ax=axs[1])
    axs[1].set_title(f'Confusion Matrix\nAccuracy: {accuracy * 100:.2f}%')
    # make axes rotated
    axs[1].set_yticklabels(axs[1].get_yticklabels(), rotation=30, ha='right')
    sorted_features = sorted(bst.get_score(importance_type="gain").items(), key=lambda x: x[1], reverse=True)
    # The most important feature is the first element in the sorted list
    most_important_feature = sorted_features[0][0]
    # Create a contingency table
    contingency_table = pd.crosstab(new_data[col], new_data[most_important_feature])

    # resid pearson is used to calculate the residuals, which 
    table = stats.Table(contingency_table).resid_pearson
    #print(table)
    # Perform the chi-squared test
    chi2, p, dof, expected = chi2_contingency(contingency_table)
    # Print the results
    print(f"Chi-squared test for {col} and {most_important_feature}: p-value = {p}")
    
    sns.heatmap(table, annot=True, cmap='Greens', ax=axs[2])
    # make axis rotated
    axs[2].set_yticklabels(axs[2].get_yticklabels(), rotation=30, ha='right')
    axs[2].set_title(f'Contingency Table between {col.split(sep=".")[-1]} and {most_important_feature.split(sep=".")[-1]}\np-value = {p}')    

    plt.tight_layout()
    #plt.savefig(f"{col}_{accuracy:.2f}_prediction_XGB.jpeg", dpi=300)
    return plt

def cramers_v(confusion_matrix):
    """Calculate Cramer's V statistic for categorical-categorical association."""
    chi2 = chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum().sum()
    phi2 = chi2 / n
    r, k = confusion_matrix.shape
    phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
    r_corr = r - ((r-1)**2)/(n-1)
    k_corr = k - ((k-1)**2)/(n-1)
    return np.sqrt(phi2corr / min((k_corr-1), (r_corr-1)))

def plot_cramers_v_heatmap(data, significance_level=0.05):
    """Plot heatmap of Cramer's V statistic for each pair of categorical variables in a DataFrame."""
    # Initialize a DataFrame to store Cramer's V values
    cramers_v_df = pd.DataFrame(index=data.columns, columns=data.columns, data=np.nan)
    
    # Compute Cramer's V for each pair of columns
    for col1 in data.columns:
        for col2 in data.columns:
            if col1 != col2:  # Avoid self-comparison
                confusion_matrix = pd.crosstab(data[col1], data[col2])
                chi2, p, dof, expected = chi2_contingency(confusion_matrix)
                # Check if the p-value is less than the significance level
                #if p < significance_level:
                #    cramers_v_df.at[col1, col2] = cramers_v(confusion_matrix)
                # alternatively, you can use the following line to include all pairs
                cramers_v_df.at[col1, col2] = cramers_v(confusion_matrix)
    
    # Plot the heatmap
    plt.figure(figsize=(12, 10), dpi=200)
    mask = np.triu(np.ones_like(cramers_v_df, dtype=bool))  # Mask for the upper triangle
    # make a max and min of the cmap
    sns.heatmap(cramers_v_df, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, mask=mask, square=True)
    plt.title(f"Heatmap of Cramér's V (p < {significance_level})")
    return plt


class UAPVisualizer:
    def __init__(self, data=None):
        pass  # Initialization can be added if needed

    def analyze_and_predict(self, data, analyzers, col_names):
        new_data = pd.DataFrame()
        for i, (column, analyzer) in enumerate(zip(col_names, analyzers)):
            new_data[f'Analyzer_{column}'] = analyzer.__dict__['cluster_terms']
            print(f"Cluster terms extracted for {column}")

        new_data = new_data.fillna('null').astype('category')
        data_nums = new_data.apply(lambda x: x.cat.codes)

        for col in data_nums.columns:
            try:
                categories = new_data[col].cat.categories
                x_train, x_test, y_train, y_test = train_test_split(data_nums.drop(columns=[col]), data_nums[col], test_size=0.2, random_state=42)
                bst, accuracy, preds = self.train_xgboost(x_train, y_train, x_test, y_test, len(categories))
                self.plot_results(new_data, bst, x_test, y_test, preds, categories, accuracy, col)
            except Exception as e:
                print(f"Error processing {col}: {e}")

    def train_xgboost(self, x_train, y_train, x_test, y_test, num_classes):
        dtrain = xgb.DMatrix(x_train, label=y_train, enable_categorical=True)
        dtest = xgb.DMatrix(x_test, label=y_test)

        params = {'objective': 'multi:softmax', 'num_class': num_classes, 'max_depth': 6, 'eta': 0.3}
        num_round = 100
        bst = xgb.train(dtrain=dtrain, params=params, num_boost_round=num_round)
        preds = bst.predict(dtest)
        accuracy = accuracy_score(y_test, preds)

        print(f"XGBoost trained with accuracy: {accuracy:.2f}")
        return bst, accuracy, preds

    def plot_results(self, new_data, bst, x_test, y_test, preds, categories, accuracy, col):
        fig, axs = plt.subplots(1, 3, figsize=(25, 5))
        fig.suptitle(f'{col.split(sep=".")[-1]} prediction', fontsize=35)

        plot_importance(bst, ax=axs[0], importance_type='gain', show_values=False)
        conf_matrix = confusion_matrix(y_test, preds)
        sns.heatmap(conf_matrix, annot=True, fmt='g', cmap='Blues', xticklabels=categories, yticklabels=categories, ax=axs[1])
        axs[1].set_title(f'Confusion Matrix\nAccuracy: {accuracy * 100:.2f}%')

        sorted_features = sorted(bst.get_score(importance_type="gain").items(), key=lambda x: x[1], reverse=True)
        most_important_feature = sorted_features[0][0]
        contingency_table = pd.crosstab(new_data[col], new_data[most_important_feature])
        chi2, p, dof, expected = chi2_contingency(contingency_table)
        print(f"Chi-squared test for {col} and {most_important_feature}: p-value = {p}")
        
        sns.heatmap(contingency_table, annot=True, cmap='Greens', ax=axs[2])
        axs[2].set_title(f'Contingency Table between {col.split(sep=".")[-1]} and {most_important_feature.split(sep=".")[-1]}\np-value = {p}')    

        plt.tight_layout()
        plt.savefig(f"{col}_{accuracy:.2f}_prediction_XGB.jpeg", dpi=300)
        plt.show()

    @staticmethod
    def cramers_v(confusion_matrix):
        chi2 = chi2_contingency(confusion_matrix)[0]
        n = confusion_matrix.sum().sum()
        phi2 = chi2 / n
        r, k = confusion_matrix.shape
        phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))
        r_corr = r - ((r-1)**2)/(n-1)
        k_corr = k - ((k-1)**2)/(n-1)
        return np.sqrt(phi2corr / min((k_corr-1), (r_corr-1)))

    def plot_cramers_v_heatmap(self, data, significance_level=0.05):
        cramers_v_df = pd.DataFrame(index=data.columns, columns=data.columns, data=np.nan)
        
        for col1 in data.columns:
            for col2 in data.columns:
                if col1 != col2:
                    confusion_matrix = pd.crosstab(data[col1], data[col2])
                    chi2, p, dof, expected = chi2_contingency(confusion_matrix)
                    if p < significance_level:
                        cramers_v_df.at[col1, col2] = UAPVisualizer.cramers_v(confusion_matrix)
        
        plt.figure(figsize=(10, 8)),# facecolor="black")
        mask = np.triu(np.ones_like(cramers_v_df, dtype=bool))
        #sns.set_theme(style="dark", rc={"axes.facecolor": "black", "grid.color": "white", "xtick.color": "white", "ytick.color": "white", "axes.labelcolor": "white", "axes.titlecolor": "white"})
        # ax = sns.heatmap(cramers_v_df, annot=True, fmt=".1f", linewidths=.5, linecolor='white', cmap='coolwarm', annot_kws={"color":"white"}, cbar=True, mask=mask, square=True)
        # Customizing the color of the ticks and labels to white
        # plt.xticks(color='white')
        # plt.yticks(color='white')
        sns.heatmap(cramers_v_df, annot=True, fmt=".2f", cmap='coolwarm', cbar=True, mask=mask, square=True)
        plt.title(f"Heatmap of Cramér's V (p < {significance_level})")
        plt.show()

    
    def plot_treemap(self, df, column, top_n=32):
        # Get the value counts and the top N labels
        value_counts = df[column].value_counts()
        top_labels = value_counts.iloc[:top_n].index
        

        # Use np.where to replace all values not in the top N with 'Other'
        revised_column = f'{column}_revised'
        df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')

        # Get the value counts including the 'Other' category
        sizes = df[revised_column].value_counts().values
        labels = df[revised_column].value_counts().index

        # Get a gradient of colors
        colors = list(mcolors.TABLEAU_COLORS.values())

        # Get % of each category
        percents = sizes / sizes.sum()

        # Prepare labels with percentages
        labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]

        # Plot the treemap
        squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})

        ax = plt.gca()

        # Iterate over text elements and rectangles (patches) in the axes for color adjustment
        for text, rect in zip(ax.texts, ax.patches):
            background_color = rect.get_facecolor()
            r, g, b, _ = mcolors.to_rgba(background_color)
            brightness = np.average([r, g, b])
            text.set_color('white' if brightness < 0.5 else 'black')

            # Adjust font size based on rectangle's area and wrap long text
            coef = 0.8
            font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
            text.set_fontsize(font_size)
            wrapped_text = textwrap.fill(text.get_text(), width=20)
            text.set_text(wrapped_text)

        plt.axis('off')
        plt.gca().invert_yaxis()
        plt.gcf().set_size_inches(20, 12)
        plt.show()




class UAPParser:
    def __init__(self, api_key, model="gpt-3.5-turbo-0125", col=None, format_long=None):
        os.environ['OPENAI_API_KEY'] = api_key
        self.client = OpenAI()
        self.model = model
        self.responses = {}
        self.col = None

    def fetch_response(self, description, format_long):
        INITIAL_WAIT_TIME = 5
        MAX_WAIT_TIME = 600
        MAX_RETRIES = 10

        wait_time = INITIAL_WAIT_TIME
        for attempt in range(MAX_RETRIES):
            try:
                response = self.client.chat.completions.create(
                    model=self.model,
                    response_format={"type": "json_object"},
                    messages=[
                        {"role": "system", "content": "You are a helpful assistant which is tasked to help parse data."},
                        {"role": "user", "content": f'Input report: {description}\n\n Parse data following this json structure; leave missing data empty: {format_long}  Output:'}
                    ]
                )
                return response
            except HTTPError as e:
                if 'TooManyRequests' in str(e):
                    time.sleep(wait_time)
                    wait_time = min(wait_time * 2, MAX_WAIT_TIME)  # Exponential backoff
                else:
                    raise
            except Exception as e:
                print(f"Unexpected error: {e}")
                break

        return None  # Return None if all retries fail

    def process_descriptions(self, descriptions, format_long, max_workers=32):
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_desc = {executor.submit(self.fetch_response, desc, format_long): desc for desc in descriptions}

            for future in stqdm(concurrent.futures.as_completed(future_to_desc), total=len(descriptions)):
                desc = future_to_desc[future]
                try:
                    response = future.result()
                    response_text = response.choices[0].message.content if response else None
                    if response_text:
                        self.responses[desc] = response_text
                except Exception as exc:
                    print(f'Error occurred for description {desc}: {exc}')

    def parse_responses(self):
        parsed_responses = {}
        not_parsed = 0
        try:
            for k, v in self.responses.items():
                try:
                    parsed_responses[k] = json.loads(v)
                except:
                    try:
                        parsed_responses[k] = json.loads(v.replace("'", '"'))
                    except:
                        not_parsed += 1
        except Exception as e:
            print(f"Error parsing responses: {e}")
 
        print(f"Number of unparsed responses: {not_parsed}")
        print(f"Number of parsed responses: {len(parsed_responses)}")
        return parsed_responses

    def responses_to_df(self, col, parsed_responses):
        parsed_df = pd.DataFrame(parsed_responses).T
        if col is not None:
            parsed_df2 = pd.json_normalize(parsed_df[col])
            parsed_df2.index = parsed_df.index
        else:
            parsed_df2 = pd.json_normalize(parsed_df)
            parsed_df2.index = parsed_df.index
        return parsed_df2