Spaces:
Sleeping
Sleeping
import math | |
import pandas as pd | |
import numpy as np | |
import json | |
import requests | |
import datetime | |
from datetime import timedelta | |
from PIL import Image | |
# alternative to PIL | |
import matplotlib.pyplot as plt | |
import matplotlib.image as mpimg | |
import os | |
import matplotlib.dates as mdates | |
import seaborn as sns | |
from IPython.display import Image as image_display | |
path = os.getcwd() | |
from fastdtw import fastdtw | |
from scipy.spatial.distance import euclidean | |
from IPython.display import display | |
from dateutil import parser | |
from Levenshtein import distance | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import confusion_matrix | |
from stqdm import stqdm | |
stqdm.pandas() | |
import streamlit.components.v1 as components | |
from dateutil import parser | |
from sentence_transformers import SentenceTransformer | |
import torch | |
import squarify | |
import matplotlib.colors as mcolors | |
import textwrap | |
import datamapplot | |
import streamlit as st | |
if 'form_submitted' not in st.session_state: | |
st.session_state['form_submitted'] = False | |
st.title('Magnetic Correlations Dashboard') | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
from pandas.api.types import ( | |
is_categorical_dtype, | |
is_datetime64_any_dtype, | |
is_numeric_dtype, | |
is_object_dtype, | |
) | |
def plot_treemap(df, column, top_n=32): | |
# Get the value counts and the top N labels | |
value_counts = df[column].value_counts() | |
top_labels = value_counts.iloc[:top_n].index | |
# Use np.where to replace all values not in the top N with 'Other' | |
revised_column = f'{column}_revised' | |
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other') | |
# Get the value counts including the 'Other' category | |
sizes = df[revised_column].value_counts().values | |
labels = df[revised_column].value_counts().index | |
# Get a gradient of colors | |
# colors = list(mcolors.TABLEAU_COLORS.values()) | |
n_colors = len(sizes) | |
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1] | |
# Get % of each category | |
percents = sizes / sizes.sum() | |
# Prepare labels with percentages | |
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)] | |
fig, ax = plt.subplots(figsize=(20, 12)) | |
# Plot the treemap | |
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10}) | |
ax = plt.gca() | |
# Iterate over text elements and rectangles (patches) in the axes for color adjustment | |
for text, rect in zip(ax.texts, ax.patches): | |
background_color = rect.get_facecolor() | |
r, g, b, _ = mcolors.to_rgba(background_color) | |
brightness = np.average([r, g, b]) | |
text.set_color('white' if brightness < 0.5 else 'black') | |
def plot_hist(df, column, bins=10, kde=True): | |
fig, ax = plt.subplots(figsize=(12, 6)) | |
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange') | |
# set the ticks and frame in orange | |
ax.spines['bottom'].set_color('orange') | |
ax.spines['top'].set_color('orange') | |
ax.spines['right'].set_color('orange') | |
ax.spines['left'].set_color('orange') | |
ax.xaxis.label.set_color('orange') | |
ax.yaxis.label.set_color('orange') | |
ax.tick_params(axis='x', colors='orange') | |
ax.tick_params(axis='y', colors='orange') | |
ax.title.set_color('orange') | |
# Set transparent background | |
fig.patch.set_alpha(0) | |
ax.patch.set_alpha(0) | |
return fig | |
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2): | |
import matplotlib.cm as cm | |
# Sort the dataframe by the date column | |
df = df.sort_values(by=x_column) | |
# Calculate rolling mean for each y_column | |
if rolling_mean_value: | |
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean() | |
# Create the plot | |
fig, ax = plt.subplots(figsize=figsize) | |
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns))) | |
# Plot each y_column as a separate line with a different color | |
for i, y_column in enumerate(y_columns): | |
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5) | |
# Rotate x-axis labels | |
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right') | |
# Format x_column as date if it is | |
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64): | |
df[x_column] = pd.to_datetime(df[x_column]).dt.date | |
# Set title, labels, and legend | |
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold') | |
ax.set_xlabel(x_column, color=color) | |
ax.set_ylabel(', '.join(y_columns), color=color) | |
ax.spines['bottom'].set_color('orange') | |
ax.spines['top'].set_color('orange') | |
ax.spines['right'].set_color('orange') | |
ax.spines['left'].set_color('orange') | |
ax.xaxis.label.set_color('orange') | |
ax.yaxis.label.set_color('orange') | |
ax.tick_params(axis='x', colors='orange') | |
ax.tick_params(axis='y', colors='orange') | |
ax.title.set_color('orange') | |
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
# Remove background | |
fig.patch.set_alpha(0) | |
ax.patch.set_alpha(0) | |
return fig | |
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45): | |
fig, ax = plt.subplots(figsize=figsize) | |
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax) | |
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold') | |
ax.set_xlabel(x_column, color=color) | |
ax.set_ylabel(y_column, color=color) | |
ax.tick_params(axis='x', colors=color) | |
ax.tick_params(axis='y', colors=color) | |
plt.xticks(rotation=rotation) | |
# Remove background | |
fig.patch.set_alpha(0) | |
ax.patch.set_alpha(0) | |
ax.spines['bottom'].set_color('orange') | |
ax.spines['top'].set_color('orange') | |
ax.spines['right'].set_color('orange') | |
ax.spines['left'].set_color('orange') | |
ax.xaxis.label.set_color('orange') | |
ax.yaxis.label.set_color('orange') | |
ax.tick_params(axis='x', colors='orange') | |
ax.tick_params(axis='y', colors='orange') | |
ax.title.set_color('orange') | |
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
return fig | |
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None): | |
fig, ax = plt.subplots(figsize=figsize) | |
width = 0.8 / len(x_columns) # the width of the bars | |
x = np.arange(len(df)) # the label locations | |
for i, x_column in enumerate(x_columns): | |
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column) | |
x += width # add the width of the bar to the x position for the next bar | |
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold') | |
ax.set_xlabel('Groups', color='orange') | |
ax.set_ylabel(y_column, color='orange') | |
ax.set_xticks(x - width * len(x_columns) / 2) | |
ax.set_xticklabels(df.index) | |
ax.tick_params(axis='x', colors='orange') | |
ax.tick_params(axis='y', colors='orange') | |
# Remove background | |
fig.patch.set_alpha(0) | |
ax.patch.set_alpha(0) | |
ax.spines['bottom'].set_color('orange') | |
ax.spines['top'].set_color('orange') | |
ax.spines['right'].set_color('orange') | |
ax.spines['left'].set_color('orange') | |
ax.xaxis.label.set_color('orange') | |
ax.yaxis.label.set_color('orange') | |
ax.title.set_color('orange') | |
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
return fig | |
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame: | |
""" | |
Adds a UI on top of a dataframe to let viewers filter columns | |
Args: | |
df (pd.DataFrame): Original dataframe | |
Returns: | |
pd.DataFrame: Filtered dataframe | |
""" | |
title_font = "Arial" | |
body_font = "Arial" | |
title_size = 32 | |
colors = ["red", "green", "blue"] | |
interpretation = False | |
extract_docx = False | |
title = "My Chart" | |
regex = ".*" | |
img_path = 'default_image.png' | |
#try: | |
# modify = st.checkbox("Add filters on raw data") | |
#except: | |
# try: | |
# modify = st.checkbox("Add filters on processed data") | |
# except: | |
# try: | |
# modify = st.checkbox("Add filters on parsed data") | |
# except: | |
# pass | |
#if not modify: | |
# return df | |
df_ = df.copy() | |
# Try to convert datetimes into a standard format (datetime, no timezone) | |
#modification_container = st.container() | |
#with modification_container: | |
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns) | |
date_column = None | |
filtered_columns = [] | |
for column in to_filter_columns: | |
left, right = st.columns((1, 20)) | |
# Treat columns with < 200 unique values as categorical if not date or numeric | |
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])): | |
user_cat_input = right.multiselect( | |
f"Values for {column}", | |
df_[column].value_counts().index.tolist(), | |
default=list(df_[column].value_counts().index) | |
) | |
df_ = df_[df_[column].isin(user_cat_input)] | |
filtered_columns.append(column) | |
with st.status(f"Category Distribution: {column}", expanded=False) as stat: | |
st.pyplot(plot_treemap(df_, column)) | |
elif is_numeric_dtype(df_[column]): | |
_min = float(df_[column].min()) | |
_max = float(df_[column].max()) | |
step = (_max - _min) / 100 | |
user_num_input = right.slider( | |
f"Values for {column}", | |
min_value=_min, | |
max_value=_max, | |
value=(_min, _max), | |
step=step, | |
) | |
df_ = df_[df_[column].between(*user_num_input)] | |
filtered_columns.append(column) | |
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size, | |
# colors, interpretation, extract_docx, img_path) | |
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_: | |
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2))) | |
elif is_object_dtype(df_[column]): | |
try: | |
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce') | |
except Exception: | |
try: | |
df_[column] = df_[column].apply(parser.parse) | |
except Exception: | |
pass | |
if is_datetime64_any_dtype(df_[column]): | |
df_[column] = df_[column].dt.tz_localize(None) | |
min_date = df_[column].min().date() | |
max_date = df_[column].max().date() | |
user_date_input = right.date_input( | |
f"Values for {column}", | |
value=(min_date, max_date), | |
min_value=min_date, | |
max_value=max_date, | |
) | |
if len(user_date_input) == 2: | |
user_date_input = tuple(map(pd.to_datetime, user_date_input)) | |
start_date, end_date = user_date_input | |
# Determine the most appropriate time unit for plot | |
time_units = { | |
'year': df_[column].dt.year, | |
'month': df_[column].dt.to_period('M'), | |
'day': df_[column].dt.date | |
} | |
unique_counts = {unit: col.nunique() for unit, col in time_units.items()} | |
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36)) | |
# Group by the most appropriate time unit and count occurrences | |
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count') | |
grouped.columns = [column, 'count'] | |
# Create a complete date range | |
if closest_to_36 == 'year': | |
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS') | |
elif closest_to_36 == 'month': | |
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS') | |
else: # day | |
date_range = pd.date_range(start=start_date, end=end_date, freq='D') | |
# Create a DataFrame with the complete date range | |
complete_range = pd.DataFrame({column: date_range}) | |
# Convert the date column to the appropriate format based on closest_to_36 | |
if closest_to_36 == 'year': | |
complete_range[column] = complete_range[column].dt.year | |
elif closest_to_36 == 'month': | |
complete_range[column] = complete_range[column].dt.to_period('M') | |
# Merge the complete range with the grouped data | |
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0) | |
with st.status(f"Date Distributions: {column}", expanded=False) as stat: | |
try: | |
st.pyplot(plot_bar(final_data, column, 'count')) | |
except Exception as e: | |
st.error(f"Error plotting bar chart: {e}") | |
df_ = df_.loc[df_[column].between(start_date, end_date)] | |
date_column = column | |
if date_column and filtered_columns: | |
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])] | |
if numeric_columns: | |
fig = plot_line(df_, date_column, numeric_columns) | |
#st.pyplot(fig) | |
# now to deal with categorical columns | |
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])] | |
if categorical_columns: | |
fig2 = plot_bar(df_, date_column, categorical_columns[0]) | |
#st.pyplot(fig2) | |
with st.status(f"Date Distribution: {column}", expanded=False) as stat: | |
try: | |
st.pyplot(fig) | |
except Exception as e: | |
st.error(f"Error plotting line chart: {e}") | |
pass | |
try: | |
st.pyplot(fig2) | |
except Exception as e: | |
st.error(f"Error plotting bar chart: {e}") | |
else: | |
user_text_input = right.text_input( | |
f"Substring or regex in {column}", | |
) | |
if user_text_input: | |
df_ = df_[df_[column].astype(str).str.contains(user_text_input)] | |
# write len of df after filtering with % of original | |
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)") | |
return df_ | |
def get_stations(): | |
base_url = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetCapabilities&format=json' | |
response = requests.get(base_url) | |
data = response.json() | |
dataframe_stations = pd.DataFrame.from_dict(data['ObservatoryList']) | |
return dataframe_stations | |
def get_haversine_distance(lat1, lon1, lat2, lon2): | |
R = 6371 | |
dlat = math.radians(lat2 - lat1) | |
dlon = math.radians(lon2 - lon1) | |
a = math.sin(dlat/2) * math.sin(dlat/2) + math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) * math.sin(dlon/2) * math.sin(dlon/2) | |
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a)) | |
d = R * c | |
return d | |
def compare_stations(test_lat_lon, data_table, distance=1000, closest=False): | |
table_updated = pd.DataFrame() | |
distances = dict() | |
for lat,lon,names in data_table[['Latitude', 'Longitude', 'Name']].values: | |
harv_distance = get_haversine_distance(test_lat_lon[0], test_lat_lon[1], lat, lon) | |
if harv_distance < distance: | |
#print(f"Station {names} is at {round(harv_distance,2)} km from the test point") | |
table_updated = pd.concat([table_updated, data_table[data_table['Name'] == names]]) | |
distances[names] = harv_distance | |
if closest: | |
closest_station = min(distances, key=distances.get) | |
#print(f"The closest station is {closest_station} at {round(distances[closest_station],2)} km") | |
table_updated = data_table[data_table['Name'] == closest_station] | |
table_updated['Distance'] = distances[closest_station] | |
return table_updated | |
def get_data(IagaCode, start_date, end_date): | |
try: | |
start_date_ = datetime.datetime.strptime(start_date, '%Y-%m-%d') | |
except ValueError as e: | |
print(f"Error: {e}") | |
start_date_ = pd.to_datetime(start_date) | |
try: | |
end_date_ = datetime.datetime.strptime(end_date, '%Y-%m-%d') | |
except ValueError as e: | |
print(f"Error: {e}") | |
end_date_ = pd.to_datetime(end_date) | |
duration = end_date_ - start_date_ | |
# Define the parameters for the request | |
params = { | |
'Request': 'GetData', | |
'format': 'PNG', | |
'testObsys': '0', | |
'observatoryIagaCode': IagaCode, | |
'samplesPerDay': 'minute', | |
'publicationState': 'Best available', | |
'dataStartDate': start_date, | |
# make substraction | |
'dataDuration': duration.days, | |
'traceList': '1234', | |
'colourTraces': 'true', | |
'pictureSize': 'Automatic', | |
'dataScale': 'Automatic', | |
'pdfSize': '21,29.7', | |
} | |
base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json' | |
#base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png' | |
for base_url in [base_url_json]:#, base_url_img]: | |
response = requests.get(base_url, params=params) | |
if response.status_code == 200: | |
content_type = response.headers.get('Content-Type') | |
if 'image' in content_type: | |
# f"custom_plot_{new_dataset.iloc[0]['IagaCode']}_{str_date.replace(':', '_')}.png" | |
# output_image_path = "plot_image.png" | |
# with open(output_image_path, 'wb') as file: | |
# file.write(response.content) | |
# print(f"Image successfully saved as {output_image_path}") | |
# # Display the image | |
# img = mpimg.imread(output_image_path) | |
# plt.imshow(img) | |
# plt.axis('off') # Hide axes | |
# plt.show() | |
# img_answer = Image.open(output_image_path) | |
img_answer = None | |
else: | |
print(f"Unexpected content type: {content_type}") | |
#print("Response content:") | |
#print(response.content.decode('utf-8')) # Attempt to print response as text | |
# return json | |
answer = response.json() | |
else: | |
print(f"Failed to retrieve data. HTTP Status code: {response.status_code}") | |
print("Response content:") | |
print(response.content.decode('utf-8')) | |
return answer#, img_answer | |
# def get_data(IagaCode, start_date, end_date): | |
# # Convert dates to datetime | |
# try: | |
# start_date_ = pd.to_datetime(start_date) | |
# end_date_ = pd.to_datetime(end_date) | |
# except ValueError as e: | |
# print(f"Error: {e}") | |
# return None, None | |
# duration = (end_date_ - start_date_).days | |
# # Define the parameters for the request | |
# params = { | |
# 'Request': 'GetData', | |
# 'format': 'json', | |
# 'testObsys': '0', | |
# 'observatoryIagaCode': IagaCode, | |
# 'samplesPerDay': 'minute', | |
# 'publicationState': 'Best available', | |
# 'dataStartDate': start_date_.strftime('%Y-%m-%d'), | |
# 'dataDuration': duration, | |
# 'traceList': '1234', | |
# 'colourTraces': 'true', | |
# 'pictureSize': 'Automatic', | |
# 'dataScale': 'Automatic', | |
# 'pdfSize': '21,29.7', | |
# } | |
# base_url_json = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=json' | |
# base_url_img = 'https://imag-data.bgs.ac.uk:/GIN_V1/GINServices?Request=GetData&format=png' | |
# try: | |
# # Request JSON data | |
# response_json = requests.get(base_url_json, params=params) | |
# response_json.raise_for_status() # Raises an error for bad status codes | |
# data = response_json.json() | |
# # Request Image | |
# params['format'] = 'png' | |
# response_img = requests.get(base_url_img, params=params) | |
# response_img.raise_for_status() | |
# # Save and display image if response is successful | |
# if 'image' in response_img.headers.get('Content-Type'): | |
# output_image_path = "plot_image.png" | |
# with open(output_image_path, 'wb') as file: | |
# file.write(response_img.content) | |
# print(f"Image successfully saved as {output_image_path}") | |
# img = mpimg.imread(output_image_path) | |
# plt.imshow(img) | |
# plt.axis('off') | |
# plt.show() | |
# img_answer = Image.open(output_image_path) | |
# else: | |
# img_answer = None | |
# return data, img_answer | |
# except requests.RequestException as e: | |
# print(f"Request failed: {e}") | |
# return None, None | |
# except ValueError as e: | |
# print(f"JSON decode error: {e}") | |
# return None, None | |
def clean_uap_data(dataset, lat, lon, date): | |
# Assuming 'nuforc' is already defined | |
processed = dataset[dataset[[lat, lon, date]].notnull().all(axis=1)] | |
# Converting 'Lat' and 'Long' columns to floats, handling errors | |
processed[lat] = pd.to_numeric(processed[lat], errors='coerce') | |
processed[lon] = pd.to_numeric(processed[lon], errors='coerce') | |
# if processed[date].min() < pd.to_datetime('1677-09-22'): | |
# processed.loc[processed[date] < pd.to_datetime('1677-09-22'), 'corrected_date'] = pd.to_datetime('1677-09-22 00:00:00') | |
procesed = processed[processed[date] >= '1677-09-22'] | |
# convert date to str | |
#processed[date] = processed[date].astype(str) | |
# Dropping rows where 'Lat' or 'Long' conversion failed (i.e., became NaN) | |
processed = processed.dropna(subset=[lat, lon]) | |
return processed | |
def plot_overlapped_timeseries(data_list, event_times, window_hours=12, save_path=None): | |
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True) | |
fig.patch.set_alpha(0) # Make figure background transparent | |
components = ['X', 'Y', 'Z', 'S'] | |
colors = ['red', 'green', 'blue', 'black'] | |
for i, component in enumerate(components): | |
axs[i].patch.set_alpha(0) # Make subplot background transparent | |
axs[i].set_ylabel(component, color='orange') | |
axs[i].grid(True, color='orange', alpha=0.3) | |
for spine in axs[i].spines.values(): | |
spine.set_color('orange') | |
axs[i].tick_params(axis='both', colors='orange') # Change tick color | |
axs[i].set_title(f'{component}', color='orange') | |
axs[i].set_xlabel('Time Difference from Event (hours)', color='orange') | |
for j, (df, event_time) in enumerate(zip(data_list, event_times)): | |
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC | |
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None) | |
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC | |
event_time = pd.to_datetime(event_time).tz_localize(None) | |
# Calculate time difference from event | |
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours | |
# Filter data within the specified window | |
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)] | |
# normalize component data | |
df_window[component] = (df_window[component] - df_window[component].mean()) / df_window[component].std() | |
axs[i].plot(df_window['time_diff'], df_window[component], color=colors[i], alpha=0.7, label=f'Event {j+1}', linewidth=1) | |
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time') | |
axs[i].set_xlim(-window_hours, window_hours) | |
#axs[i].legend(loc='upper left', bbox_to_anchor=(1, 1)) | |
axs[-1].set_xlabel('Hours from Event', color='orange') | |
fig.suptitle('Overlapped Time Series of Components', fontsize=16, color='orange') | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.95, right=0.85) | |
if save_path: | |
fig.savefig(save_path, transparent=True, bbox_inches='tight') | |
plt.close(fig) | |
return save_path | |
else: | |
return fig | |
def plot_average_timeseries(data_list, event_times, window_hours=12, save_path=None): | |
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True) | |
fig.patch.set_alpha(0) # Make figure background transparent | |
components = ['X', 'Y', 'Z', 'S'] | |
colors = ['red', 'green', 'blue', 'black'] | |
for i, component in enumerate(components): | |
axs[i].patch.set_alpha(0) | |
axs[i].set_ylabel(component, color='orange') | |
axs[i].grid(True, color='orange', alpha=0.3) | |
for spine in axs[i].spines.values(): | |
spine.set_color('orange') | |
axs[i].tick_params(axis='both', colors='orange') | |
all_data = [] | |
time_diffs = [] | |
for j, (df, event_time) in enumerate(zip(data_list, event_times)): | |
# Convert datetime column to UTC if it has timezone info, otherwise assume it's UTC | |
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None) | |
# Convert event_time to UTC if it has timezone info, otherwise assume it's UTC | |
event_time = pd.to_datetime(event_time).tz_localize(None) | |
# Calculate time difference from event | |
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 # Convert to hours | |
# Filter data within the specified window | |
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)] | |
# Normalize component data | |
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std() | |
all_data.append(df_window[component].values) | |
time_diffs.append(df_window['time_diff'].values) | |
# Calculate average and standard deviation | |
try: | |
avg_data = np.mean(all_data, axis=0) | |
except: | |
avg_data = np.zeros_like(all_data[0]) | |
try: | |
std_data = np.std(all_data, axis=0) | |
except: | |
std_data = np.zeros_like(avg_data) | |
axs[-1].set_xlabel('Hours from Event', color='orange') | |
fig.suptitle('Average Time Series of Components', fontsize=16, color='orange') | |
# Plot average line | |
axs[i].plot(time_diffs[0], avg_data, color=colors[i], label='Average') | |
# Plot standard deviation as shaded region | |
try: | |
axs[i].fill_between(time_diffs[0], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2) | |
except: | |
pass | |
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time') | |
axs[i].set_xlim(-window_hours, window_hours) | |
# orange frame, orange label legend | |
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange') | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.95, right=0.85) | |
if save_path: | |
fig.savefig(save_path, transparent=True, bbox_inches='tight') | |
plt.close(fig) | |
return save_path | |
else: | |
return fig | |
def align_series(reference, series): | |
reference = reference.flatten() | |
series = series.flatten() | |
_, path = fastdtw(reference, series, dist=euclidean) | |
aligned = np.zeros(len(reference)) | |
for ref_idx, series_idx in path: | |
aligned[ref_idx] = series[series_idx] | |
return aligned | |
def plot_average_timeseries_with_dtw(data_list, event_times, window_hours=12, save_path=None): | |
fig, axs = plt.subplots(4, 1, figsize=(12, 16), sharex=True) | |
fig.patch.set_alpha(0) # Make figure background transparent | |
components = ['X', 'Y', 'Z', 'S'] | |
colors = ['red', 'green', 'blue', 'black'] | |
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange') | |
for i, component in enumerate(components): | |
axs[i].patch.set_alpha(0) | |
axs[i].set_ylabel(component, color='orange', rotation=90) | |
axs[i].grid(True, color='orange', alpha=0.3) | |
for spine in axs[i].spines.values(): | |
spine.set_color('orange') | |
axs[i].tick_params(axis='both', colors='orange') | |
all_aligned_data = [] | |
reference_df = None | |
for j, (df, event_time) in enumerate(zip(data_list, event_times)): | |
df['datetime'] = pd.to_datetime(df['datetime']).dt.tz_localize(None) | |
event_time = pd.to_datetime(event_time).tz_localize(None) | |
df['time_diff'] = (df['datetime'] - event_time).dt.total_seconds() / 3600 | |
df_window = df[(df['time_diff'] >= -window_hours) & (df['time_diff'] <= window_hours)] | |
df_window[component] = (df_window[component] - df_window[component].mean())# / df_window[component].std() | |
if reference_df is None: | |
reference_df = df_window | |
all_aligned_data.append(reference_df[component].values) | |
else: | |
try: | |
aligned_series = align_series(reference_df[component].values, df_window[component].values) | |
all_aligned_data.append(aligned_series) | |
except: | |
pass | |
# Calculate average and standard deviation of aligned data | |
all_aligned_data = np.array(all_aligned_data) | |
avg_data = np.mean(all_aligned_data, axis=0) | |
# round float to avoid sqrt errors | |
def calculate_std(data): | |
if data is not None and len(data) > 0: | |
data = np.array(data) | |
std_data = np.std(data) | |
return std_data | |
else: | |
return "Data is empty or not a list" | |
std_data = calculate_std(all_aligned_data) | |
# Plot average line | |
axs[i].plot(reference_df['time_diff'], avg_data, color=colors[i], label='Average') | |
# Plot standard deviation as shaded region | |
try: | |
axs[i].fill_between(reference_df['time_diff'], avg_data - std_data, avg_data + std_data, color=colors[i], alpha=0.2) | |
except TypeError as e: | |
#print(f"Error: {e}") | |
pass | |
axs[i].axvline(x=0, color='red', linewidth=2, linestyle='--', label='Event Time') | |
axs[i].set_xlim(-window_hours, window_hours) | |
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange') | |
axs[-1].set_xlabel('Hours from Event', color='orange') | |
fig.suptitle('Average Time Series of Components (FastDTW Aligned)', fontsize=16, color='orange') | |
plt.tight_layout() | |
plt.subplots_adjust(top=0.85, right=0.85, left=0.1) | |
if save_path: | |
fig.savefig(save_path, transparent=True, bbox_inches='tight') | |
plt.close(fig) | |
return save_path | |
else: | |
return fig | |
def plot_data_custom(df, date, save_path=None, subtitle=None): | |
df['datetime'] = pd.to_datetime(df['datetime']) | |
event = pd.to_datetime(date) | |
window = timedelta(hours=12) | |
x_min = event - window | |
x_max = event + window | |
fig, axs = plt.subplots(4, 1, figsize=(12, 12), sharex=True) | |
fig.patch.set_alpha(0) # Make figure background transparent | |
components = ['X', 'Y', 'Z', 'S'] | |
colors = ['red', 'green', 'blue', 'black'] | |
fig.text(0.02, 0.5, 'Geomagnetic Variation (nT)', va='center', rotation='vertical', color='orange') | |
# if df[component].isnull().all().all(): | |
# return None | |
for i, component in enumerate(components): | |
axs[i].plot(df['datetime'], df[component], label=component, color=colors[i]) | |
axs[i].axvline(x=event, color='red', linewidth=2, label='Event', linestyle='--') | |
axs[i].set_ylabel(component, color='orange', rotation=90) | |
axs[i].set_xlim(x_min, x_max) | |
axs[i].legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.2, labelcolor='orange', edgecolor='orange') | |
axs[i].grid(True, color='orange', alpha=0.3) | |
axs[i].patch.set_alpha(0) # Make subplot background transparent | |
for spine in axs[i].spines.values(): | |
spine.set_color('orange') | |
axs[i].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) | |
axs[i].xaxis.set_major_locator(mdates.HourLocator(interval=1)) | |
axs[i].tick_params(axis='both', colors='orange') | |
plt.setp(axs[-1].xaxis.get_majorticklabels(), rotation=45) | |
axs[-1].set_xlabel('Hours', color='orange') | |
fig.suptitle(f'Time Series of Components with Event Marks\n{subtitle}', fontsize=12, color='orange') | |
plt.tight_layout() | |
#plt.subplots_adjust(top=0.85) | |
plt.subplots_adjust(top=0.85, right=0.85, left=0.1) | |
if save_path: | |
fig.savefig(save_path, transparent=True) | |
plt.close(fig) | |
return save_path | |
else: | |
return fig | |
def batch_requests(stations, dataset, lon, lat, date, distance=100): | |
results = {"station": [], "data": [], "image": [], "custom_image": []} | |
all_data = [] | |
all_event_times = [] | |
for lon_, lat_, date_ in dataset[[lon, lat, date]].values: | |
test_lat_lon = (lat_, lon_) | |
try: | |
str_date = pd.to_datetime(date_).strftime('%Y-%m-%dT%H:%M:%S') | |
except: | |
str_date = date_ | |
twelve_hours = pd.Timedelta(hours=12) | |
forty_eight_hours = pd.Timedelta(hours=48) | |
try: | |
str_date_start = (pd.to_datetime(str_date) - twelve_hours).strftime('%Y-%m-%dT%H:%M:%S') | |
str_date_end = (pd.to_datetime(str_date) + forty_eight_hours).strftime('%Y-%m-%dT%H:%M:%S') | |
except Exception as e: | |
print(f"Error: {e}") | |
pass | |
try: | |
new_dataset = compare_stations(test_lat_lon, stations, distance=distance, closest=True) | |
station_name = new_dataset['Name'] | |
station_distance = new_dataset['Distance'] | |
test_ = get_data(new_dataset.iloc[0]['IagaCode'], str_date_start, str_date_end) | |
if test_ and any(test_.get(key) for key in ['X', 'Y', 'Z', 'S']): | |
plotted = pd.DataFrame({ | |
'datetime': test_['datetime'], | |
'X': test_.get('X', []), | |
'Y': test_.get('Y', []), | |
'Z': test_.get('Z', []), | |
'S': test_.get('S', []), | |
}) | |
if plotted[['X', 'Y', 'Z', 'S']].any().any(): | |
all_data.append(plotted) | |
all_event_times.append(pd.to_datetime(date_)) | |
additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\nDistance: {round(station_distance.values[0], 2)} km" | |
fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle=additional_data) | |
with st.status(f'Magnetic Data: {date_}', expanded=False) as status: | |
st.pyplot(fig) | |
status.update(f'Magnetic Data: {date_} - Finished!') | |
else: | |
print(f"No data for X, Y, Z, or S for date: {date_}") | |
except Exception as e: | |
#print(f"An error occurred: {e}") | |
pass | |
# if test_: | |
# results["station"].append(new_dataset.iloc[0]['IagaCode']) | |
# results["data"].append(test_) | |
# plotted = pd.DataFrame({ | |
# 'datetime': test_['datetime'], | |
# 'X': test_['X'], | |
# 'Y': test_['Y'], | |
# 'Z': test_['Z'], | |
# 'S': test_['S'], | |
# }) | |
# all_data.append(plotted) | |
# all_event_times.append(pd.to_datetime(date_)) | |
# # print(date_) | |
# additional_data = f"Date: {date_}\nLat/Lon: {lat_}, {lon_}\nClosest station: {station_name.values[0]}\n Distance:{round(station_distance.values[0],2)} km" | |
# fig = plot_data_custom(plotted, date=pd.to_datetime(date_), save_path=None, subtitle =additional_data) | |
# with st.status(f'Magnetic Data: {date_}', expanded=False) as status: | |
# st.pyplot(fig) | |
# status.update(f'Magnetic Data: {date_} - Finished!') | |
# except Exception as e: | |
# #print(f"An error occurred: {e}") | |
# pass | |
if all_data: | |
fig_overlapped = plot_overlapped_timeseries(all_data, all_event_times) | |
display(fig_overlapped) | |
plt.close(fig_overlapped) | |
# fig_average = plot_average_timeseries(all_data, all_event_times) | |
# st.pyplot(fig_average) | |
fig_average_aligned = plot_average_timeseries_with_dtw(all_data, all_event_times) | |
with st.status(f'Dynamic Time Warping Data', expanded=False) as stts: | |
st.pyplot(fig_average_aligned) | |
return results | |
df = pd.DataFrame() | |
# Upload dataset | |
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"]) | |
if uploaded_file is not None: | |
if uploaded_file.name.endswith('.csv'): | |
df = pd.read_csv(uploaded_file) | |
else: | |
df = pd.read_excel(uploaded_file) | |
stations = get_stations() | |
st.write("Dataset Loaded:") | |
df = filter_dataframe(df) | |
st.dataframe(df) | |
# Select columns | |
with st.form(border=True, key='Select Columns for Analysis'): | |
lon_col = st.selectbox("Select Longitude Column", df.columns) | |
lat_col = st.selectbox("Select Latitude Column", df.columns) | |
date_col = st.selectbox("Select Date Column", df.columns) | |
distance = st.number_input("Enter Distance", min_value=0, value=100) | |
if st.form_submit_button("Process Data"): | |
cases = clean_uap_data(df, lat_col, lon_col, date_col) | |
results = batch_requests(stations, cases, lon_col, lat_col, date_col, distance=distance) | |