Ashoka74's picture
Update map.py
656d56d verified
import json
import streamlit as st
#import geopandas as gpd
from keplergl import keplergl
import pandas as pd
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
from streamlit_extras.stateful_button import button as stateful_button
from streamlit_keplergl import keplergl_static
from keplergl import KeplerGl
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
st.title('Interactive Map')
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = None
if 'map_generated' not in st.session_state:
st.session_state['map_generated'] = False
if 'date_loaded' not in st.session_state:
st.session_state['data_loaded'] = False
if "datasets" not in st.session_state:
st.session_state.datasets = []
# sf_zip_geo_gdf = gpd.read_file("sf_zip_geo.geojson")
# sf_zip_geo_gdf.label = "SF Zip Geo"
# sf_zip_geo_gdf.id = "sf-zip-geo"
# st.session_state.datasets.append(sf_zip_geo_gdf)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
coef = 0.8
font_size = np.sqrt(rect.get_width() * rect.get_height()) * coef
text.set_fontsize(font_size)
wrapped_text = textwrap.fill(text.get_text(), width=20)
text.set_text(wrapped_text)
plt.axis('off')
plt.gca().invert_yaxis()
plt.gcf().set_size_inches(20, 12)
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None, rotation=45):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
plt.xticks(rotation=rotation)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def generate_kepler_map(data):
map_config = keplergl(data, height=400)
return map_config
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
try:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
except:
try:
to_filter_columns = st.multiselect("Filter dataframe", df_.columns)
except:
try:
to_filter_columns = st.multiselect("Filter the dataframe on", df_.columns)
except:
pass
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
# if len(user_date_input) == 2:
# start_date, end_date = user_date_input
# df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
# convert back to str for the map
df_[column] = df_[column].dt.strftime('%Y-%m-%d %H:%M:%S')
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
def find_lat_lon_columns(df):
lat_columns = df.columns[df.columns.str.lower().str.contains('lat')]
lon_columns = df.columns[df.columns.str.lower().str.contains('lon|lng')]
if len(lat_columns) > 0 and len(lon_columns) > 0:
return lat_columns[0], lon_columns[0]
else:
return None, None
# Load dataset
data_path = 'parsed_files_distance_embeds.h5'
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
parsed = load_data(data_path).drop(columns=['embeddings'])
parsed_responses = filter_dataframe(parsed)
st.session_state['parsed_responses'] = parsed_responses
st.dataframe(parsed_responses)
my_dataset = st.file_uploader("Upload Parsed DataFrame", type=["csv", "xlsx"])
if my_dataset is not None:
if parsed: # save space by cleaning default dataset
parsed = None
try:
if my_dataset.type == "text/csv":
data = pd.read_csv(my_dataset)
elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
data = pd.read_excel(my_dataset)
else:
st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.")
st.stop()
parser = filter_dataframe(data)
st.session_state['parsed_responses'] = parser
st.dataframe(parser)
st.success(f"Successfully loaded and displayed data from {my_dataset.name}")
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
else:
parsed = load_data(data_path).drop(columns=['embeddings'])
parsed_responses = filter_dataframe(parsed)
st.session_state['parsed_responses'] = parsed_responses
st.dataframe(parsed_responses)
map_1 = KeplerGl(height=800)
powerplant = pd.read_csv('global_power_plant_database.csv')
secret_bases = pd.read_csv('secret_bases.csv')
map_1.add_data(
data=secret_bases, name="secret_bases"
)
map_1.add_data(
data=powerplant, name='nuclear_powerplants'
)
if my_dataset is not None :
try:
if my_dataset.type == "text/csv":
data = pd.read_csv(my_dataset)
elif my_dataset.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
data = pd.read_excel(my_dataset)
else:
st.error("Unsupported file type. Please upload a CSV, Excel or HD5 file.")
st.stop()
parser = filter_dataframe(data)
st.session_state['parsed_responses'] = parser
st.dataframe(parser)
st.success(f"Successfully loaded and displayed data from {my_dataset.name}")
#h3_hex_id_df = pd.read_csv("keplergl/h3_data.csv")
st.session_state['data_loaded'] = True
# Load the base config
with open('military_config.kgl', 'r') as f:
base_config = json.load(f)
with open('uap_config.kgl', 'r') as f:
uap_config = json.load(f)
if parser.columns.str.contains('date').any():
# Get the date column name
date_column = parser.columns[parser.columns.str.contains('date')].values[0]
# Create a new filter
new_filter = {
"dataId": "uap_sightings",
"name": date_column
}
# Append the new filter to the existing filters
base_config['config']['visState']['filters'].append(new_filter)
# Update the map config
map_1.config = base_config
# Find the latitude and longitude columns in the dataframe
lat_col, lon_col = find_lat_lon_columns(parser)
if lat_col and lon_col:
# try:
# parsed[lat_col] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
# parser[lat_col] = parser[lat_col].astype(float)
# parser[lon_col] = parser[lon_col].astype(float)
# except:
# pass
# Update the layer configurations
for layer in uap_config['config']['visState']['layers']:
if 'config' in layer and 'columns' in layer['config']:
if 'lat' in layer['config']['columns']:
layer['config']['columns']['lat'] = lat_col
if 'lng' in layer['config']['columns']:
layer['config']['columns']['lng'] = lon_col
# Now extend the base_config with the updated uap_config layers
base_config['config']['visState']['layers'].extend(uap_config['config']['visState']['layers'])
map_1.config = base_config
else:
base_config['config']['visState']['layers'].extend([layer for layer in uap_config['config']['visState']['layers']])
map_1.config = base_config
map_1.add_data(
data=parser, name="uap_sightings"
)
keplergl_static(map_1, center_map=True)
st.session_state['map_generated'] = True
with st.container(border=True):
st.write("Military Base coordinates approximated from: https://www.dpiarchive.com/ (Archive / UFO Related Secret Facilities / Top Priority Documents / Facilities Map and List.pdf)\n\nNuclear Powerplants from: https://datasets.wri.org/dataset/globalpowerplantdatabase")
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
else:
st.warning("Please upload a file to get started.")