Ashoka74's picture
gpt-4o-mini set as default
d8ef656 verified
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from uap_analyzer import UAPParser, UAPAnalyzer, UAPVisualizer
# import ChartGen
# from ChartGen import ChartGPT
from Levenshtein import distance
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from stqdm import stqdm
stqdm.pandas()
import streamlit.components.v1 as components
from dateutil import parser
from sentence_transformers import SentenceTransformer
import torch
import squarify
import matplotlib.colors as mcolors
import textwrap
import datamapplot
import openai
from openai import OpenAI
import os
import json
# this is a test comment
import plotly.graph_objects as go
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def plot_treemap(df, column, top_n=32):
# Get the value counts and the top N labels
value_counts = df[column].value_counts()
top_labels = value_counts.iloc[:top_n].index
# Use np.where to replace all values not in the top N with 'Other'
revised_column = f'{column}_revised'
df[revised_column] = np.where(df[column].isin(top_labels), df[column], 'Other')
# Get the value counts including the 'Other' category
sizes = df[revised_column].value_counts().values
labels = df[revised_column].value_counts().index
# Get a gradient of colors
# colors = list(mcolors.TABLEAU_COLORS.values())
n_colors = len(sizes)
colors = plt.cm.Oranges(np.linspace(0.3, 0.9, n_colors))[::-1]
# Get % of each category
percents = sizes / sizes.sum()
# Prepare labels with percentages
labels = [f'{label}\n {percent:.1%}' for label, percent in zip(labels, percents)]
fig, ax = plt.subplots(figsize=(20, 12))
# Plot the treemap
squarify.plot(sizes=sizes, label=labels, alpha=0.7, pad=True, color=colors, text_kwargs={'fontsize': 10})
ax = plt.gca()
# Iterate over text elements and rectangles (patches) in the axes for color adjustment
for text, rect in zip(ax.texts, ax.patches):
background_color = rect.get_facecolor()
r, g, b, _ = mcolors.to_rgba(background_color)
brightness = np.average([r, g, b])
text.set_color('white' if brightness < 0.5 else 'black')
# Adjust font size based on rectangle's area and wrap long text
st.set_option('deprecation.showPyplotGlobalUse', False)
from pandas.api.types import (
is_categorical_dtype,
is_datetime64_any_dtype,
is_numeric_dtype,
is_object_dtype,
)
class CachedUAPParser(UAPParser):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = {}
def parse_responses(self):
parsed_responses = {}
not_parsed = 0
try:
for k, v in self.responses.items():
try:
parsed_responses[k] = json.loads(v)
except:
try:
parsed_responses[k] = json.loads(v.replace("'", '"'))
except:
not_parsed += 1
# Update the cached responses
st.session_state['parsed_responses'] = parsed_responses
except Exception as e:
st.error(f"Error parsing responses: {e}")
st.write(f"Number of unparsed responses: {not_parsed}")
st.write(f"Number of parsed responses: {len(parsed_responses)}")
return st.session_state['parsed_responses']
def responses_to_df(self, col, parsed_responses):
try:
parsed_df = pd.DataFrame(parsed_responses).T
if col is not None:
parsed_df2 = pd.json_normalize(parsed_df[col])
parsed_df2.index = parsed_df.index
else:
parsed_df2 = pd.json_normalize(parsed_df)
parsed_df2.index = parsed_df.index
# Convert problematic columns to string
for column in parsed_df2.columns:
if parsed_df2[column].dtype == 'object':
parsed_df2[column] = parsed_df2[column].astype(str)
return parsed_df2
except Exception as e:
st.error(f"Error converting responses to DataFrame: {e}")
return pd.DataFrame() # Return an empty DataFrame if conversion fails
def load_data(file_path, key='df'):
return pd.read_hdf(file_path, key=key)
def gemini_query(question, selected_data, gemini_key):
if question == "":
question = "Summarize the following data in relevant bullet points"
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# selected_data is a list
# remove empty
filtered = [str(x) for x in selected_data if str(x) != '' and x is not None]
# make a string
context = '\n'.join(filtered)
genai.configure(api_key=gemini_key)
query_model = genai.GenerativeModel('models/gemini-1.5-pro-latest')
response = query_model.generate_content([f"{question}\n Answer based on this context: {context}\n\n"])
return(response.text)
def plot_hist(df, column, bins=10, kde=True):
fig, ax = plt.subplots(figsize=(12, 6))
sns.histplot(data=df, x=column, kde=True, bins=bins,color='orange')
# set the ticks and frame in orange
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
# Set transparent background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def is_api_key_valid(api_key, model='gpt-4o-mini'):
try:
os.environ['OPENAI_API_KEY'] = api_key
client = OpenAI()
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": 'Say Hello World!'}])
text = response.choices[0].message.content
if len(text) >= 0:
return True
except Exception as e:
st.error(f'Error with the API key :{e}')
return False
def download_json(data):
json_str = json.dumps(data, indent=2)
return json_str
def convert_cached_data_to_df(parser):
if 'parsed_responses' in st.session_state:
#parser = CachedUAPParser(api_key=API_KEY, model='gpt-4o-mini')
try:
responses_df = parser.responses_to_df('sightingDetails', st.session_state['parsed_responses'])
except Exception as e:
st.warning(f"Error parsing with 'sightingDetails': {e}")
responses_df = parser.responses_to_df(None, st.session_state['parsed_responses'])
if not responses_df.empty:
st.dataframe(responses_df)
st.session_state['parsed_responses_df'] = responses_df.copy()
st.success("Successfully converted cached data to DataFrame.")
else:
st.error("Failed to create DataFrame from cached responses.")
else:
st.warning("No cached data available. Please parse the dataset first.")
def plot_line(df, x_column, y_columns, figsize=(12, 10), color='orange', title=None, rolling_mean_value=2):
import matplotlib.cm as cm
# Sort the dataframe by the date column
df = df.sort_values(by=x_column)
# Calculate rolling mean for each y_column
if rolling_mean_value:
df[y_columns] = df[y_columns].rolling(len(df) // rolling_mean_value).mean()
# Create the plot
fig, ax = plt.subplots(figsize=figsize)
colors = cm.Oranges(np.linspace(0.2, 1, len(y_columns)))
# Plot each y_column as a separate line with a different color
for i, y_column in enumerate(y_columns):
df.plot(x=x_column, y=y_column, ax=ax, color=colors[i], label=y_column, linewidth=.5)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=30, ha='right')
# Format x_column as date if it is
if np.issubdtype(df[x_column].dtype, np.datetime64) or np.issubdtype(df[x_column].dtype, np.timedelta64):
df[x_column] = pd.to_datetime(df[x_column]).dt.date
# Set title, labels, and legend
ax.set_title(title or f'{", ".join(y_columns)} over {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(', '.join(y_columns), color=color)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
return fig
def plot_bar(df, x_column, y_column, figsize=(12, 10), color='orange', title=None):
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(data=df, x=x_column, y=y_column, color=color, ax=ax)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')
ax.set_title(title if title else f'{y_column} by {x_column}', color=color, fontweight='bold')
ax.set_xlabel(x_column, color=color)
ax.set_ylabel(y_column, color=color)
ax.tick_params(axis='x', colors=color)
ax.tick_params(axis='y', colors=color)
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
def plot_grouped_bar(df, x_columns, y_column, figsize=(12, 10), colors=None, title=None):
fig, ax = plt.subplots(figsize=figsize)
width = 0.8 / len(x_columns) # the width of the bars
x = np.arange(len(df)) # the label locations
for i, x_column in enumerate(x_columns):
sns.barplot(data=df, x=x, y=y_column, color=colors[i] if colors else None, ax=ax, width=width, label=x_column)
x += width # add the width of the bar to the x position for the next bar
ax.set_title(title if title else f'{y_column} by {", ".join(x_columns)}', color='orange', fontweight='bold')
ax.set_xlabel('Groups', color='orange')
ax.set_ylabel(y_column, color='orange')
ax.set_xticks(x - width * len(x_columns) / 2)
ax.set_xticklabels(df.index)
ax.tick_params(axis='x', colors='orange')
ax.tick_params(axis='y', colors='orange')
# Remove background
fig.patch.set_alpha(0)
ax.patch.set_alpha(0)
ax.spines['bottom'].set_color('orange')
ax.spines['top'].set_color('orange')
ax.spines['right'].set_color('orange')
ax.spines['left'].set_color('orange')
ax.xaxis.label.set_color('orange')
ax.yaxis.label.set_color('orange')
ax.title.set_color('orange')
ax.legend(loc='upper right', bbox_to_anchor=(1, 1), facecolor='black', framealpha=.4, labelcolor='orange', edgecolor='orange')
return fig
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
try:
csv = df.to_csv().encode("utf-8")
except:
csv = df.to_csv().encode("utf-8-sig")
return csv
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
"""
Adds a UI on top of a dataframe to let viewers filter columns
Args:
df (pd.DataFrame): Original dataframe
Returns:
pd.DataFrame: Filtered dataframe
"""
title_font = "Arial"
body_font = "Arial"
title_size = 32
colors = ["red", "green", "blue"]
interpretation = False
extract_docx = False
title = "My Chart"
regex = ".*"
img_path = 'default_image.png'
#try:
# modify = st.checkbox("Add filters on raw data")
#except:
# try:
# modify = st.checkbox("Add filters on processed data")
# except:
# try:
# modify = st.checkbox("Add filters on parsed data")
# except:
# pass
#if not modify:
# return df
df_ = df.copy()
# Try to convert datetimes into a standard format (datetime, no timezone)
#modification_container = st.container()
#with modification_container:
to_filter_columns = st.multiselect("Filter dataframe on", df_.columns)
date_column = None
filtered_columns = []
for column in to_filter_columns:
left, right = st.columns((1, 20))
# Treat columns with < 200 unique values as categorical if not date or numeric
if is_categorical_dtype(df_[column]) or (df_[column].nunique() < 120 and not is_datetime64_any_dtype(df_[column]) and not is_numeric_dtype(df_[column])):
user_cat_input = right.multiselect(
f"Values for {column}",
df_[column].value_counts().index.tolist(),
default=list(df_[column].value_counts().index)
)
df_ = df_[df_[column].isin(user_cat_input)]
filtered_columns.append(column)
with st.status(f"Category Distribution: {column}", expanded=False) as stat:
st.pyplot(plot_treemap(df_, column))
elif is_numeric_dtype(df_[column]):
_min = float(df_[column].min())
_max = float(df_[column].max())
step = (_max - _min) / 100
user_num_input = right.slider(
f"Values for {column}",
min_value=_min,
max_value=_max,
value=(_min, _max),
step=step,
)
df_ = df_[df_[column].between(*user_num_input)]
filtered_columns.append(column)
# Chart_GPT = ChartGPT(df_, title_font, body_font, title_size,
# colors, interpretation, extract_docx, img_path)
with st.status(f"Numerical Distribution: {column}", expanded=False) as stat_:
st.pyplot(plot_hist(df_, column, bins=int(round(len(df_[column].unique())-1)/2)))
elif is_object_dtype(df_[column]):
try:
df_[column] = pd.to_datetime(df_[column], infer_datetime_format=True, errors='coerce')
except Exception:
try:
df_[column] = df_[column].apply(parser.parse)
except Exception:
pass
if is_datetime64_any_dtype(df_[column]):
df_[column] = df_[column].dt.tz_localize(None)
min_date = df_[column].min().date()
max_date = df_[column].max().date()
user_date_input = right.date_input(
f"Values for {column}",
value=(min_date, max_date),
min_value=min_date,
max_value=max_date,
)
# if len(user_date_input) == 2:
# start_date, end_date = user_date_input
# df_ = df_.loc[df_[column].dt.date.between(start_date, end_date)]
if len(user_date_input) == 2:
user_date_input = tuple(map(pd.to_datetime, user_date_input))
start_date, end_date = user_date_input
# Determine the most appropriate time unit for plot
time_units = {
'year': df_[column].dt.year,
'month': df_[column].dt.to_period('M'),
'day': df_[column].dt.date
}
unique_counts = {unit: col.nunique() for unit, col in time_units.items()}
closest_to_36 = min(unique_counts, key=lambda k: abs(unique_counts[k] - 36))
# Group by the most appropriate time unit and count occurrences
grouped = df_.groupby(time_units[closest_to_36]).size().reset_index(name='count')
grouped.columns = [column, 'count']
# Create a complete date range
if closest_to_36 == 'year':
date_range = pd.date_range(start=f"{start_date.year}-01-01", end=f"{end_date.year}-12-31", freq='YS')
elif closest_to_36 == 'month':
date_range = pd.date_range(start=start_date.replace(day=1), end=end_date + pd.offsets.MonthEnd(0), freq='MS')
else: # day
date_range = pd.date_range(start=start_date, end=end_date, freq='D')
# Create a DataFrame with the complete date range
complete_range = pd.DataFrame({column: date_range})
# Convert the date column to the appropriate format based on closest_to_36
if closest_to_36 == 'year':
complete_range[column] = complete_range[column].dt.year
elif closest_to_36 == 'month':
complete_range[column] = complete_range[column].dt.to_period('M')
# Merge the complete range with the grouped data
final_data = pd.merge(complete_range, grouped, on=column, how='left').fillna(0)
with st.status(f"Date Distributions: {column}", expanded=False) as stat:
try:
st.pyplot(plot_bar(final_data, column, 'count'))
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
df_ = df_.loc[df_[column].between(start_date, end_date)]
date_column = column
if date_column and filtered_columns:
numeric_columns = [col for col in filtered_columns if is_numeric_dtype(df_[col])]
if numeric_columns:
fig = plot_line(df_, date_column, numeric_columns)
#st.pyplot(fig)
# now to deal with categorical columns
categorical_columns = [col for col in filtered_columns if is_categorical_dtype(df_[col])]
if categorical_columns:
fig2 = plot_bar(df_, date_column, categorical_columns[0])
#st.pyplot(fig2)
with st.status(f"Date Distribution: {column}", expanded=False) as stat:
try:
st.pyplot(fig)
except Exception as e:
st.error(f"Error plotting line chart: {e}")
pass
try:
st.pyplot(fig2)
except Exception as e:
st.error(f"Error plotting bar chart: {e}")
else:
user_text_input = right.text_input(
f"Substring or regex in {column}",
)
if user_text_input:
df_ = df_[df_[column].astype(str).str.contains(user_text_input)]
# write len of df after filtering with % of original
st.write(f"{len(df_)} rows ({len(df_) / len(df) * 100:.2f}%)")
return df_
from config import FORMAT_LONG
OPENAI_KEY = st.secrets["OPENAI_KEY"]
GEMINI_KEY = st.secrets["GEMINI_KEY"]
with torch.no_grad():
torch.cuda.empty_cache()
#st.set_page_config(
# page_title="UAP ANALYSIS",
# page_icon=":alien:",
# layout="wide",
# initial_sidebar_state="expanded",
#)
st.title('UAP Feature Extraction')
# Initialize session state
if 'analyzers' not in st.session_state:
st.session_state['analyzers'] = []
if 'col_names' not in st.session_state:
st.session_state['col_names'] = []
if 'clusters' not in st.session_state:
st.session_state['clusters'] = {}
if 'new_data' not in st.session_state:
st.session_state['new_data'] = pd.DataFrame()
if 'dataset' not in st.session_state:
st.session_state['dataset'] = pd.DataFrame()
if 'data_processed' not in st.session_state:
st.session_state['data_processed'] = False
if 'stage' not in st.session_state:
st.session_state['stage'] = 0
if 'filtered_data' not in st.session_state:
st.session_state['filtered_data'] = None
if 'gemini_answer' not in st.session_state:
st.session_state['gemini_answer'] = None
if 'parsed_responses' not in st.session_state:
st.session_state['parsed_responses'] = None
if 'parsed_responses_df' not in st.session_state:
st.session_state['parsed_responses_df'] = None
if 'json_format' not in st.session_state:
st.session_state['json_format'] = None
if 'api_key_valid' not in st.session_state:
st.session_state['api_key_valid'] = False
if 'previous_api_key' not in st.session_state:
st.session_state['previous_api_key'] = None
# Unparsed data
#unparsed_tickbox = st.checkbox('Data Parsing')
#if unparsed_tickbox:
unparsed = st.file_uploader("Upload Raw DataFrame", type=["csv", "xlsx"])
if unparsed is not None:
try:
data = pd.read_csv(unparsed) if unparsed.type == "text/csv" else pd.read_excel(unparsed)
filtered_data = filter_dataframe(data)
st.dataframe(filtered_data)
except Exception as e:
st.error(f"An error occurred while reading the file: {e}")
modify_json = st.checkbox('Custom JSON')
API_KEY = st.text_input('OpenAI API Key', API_KEY, type='password', help="Enter your OpenAI API key")
if modify_json:
FORMAT_LONG = st.text_area('Custom JSON', FORMAT_LONG, height=500)
st.download_button("Save Format", FORMAT_LONG)
try:
json.loads(FORMAT_LONG)
st.session_state['json_format'] = True
except json.JSONDecodeError as e:
st.error(f"Invalid JSON format: {str(e)}")
st.session_state['json_format'] = False
st.stop() # Stop execution if JSON is invalid
# If the DataFrame is successfully created, allow the user to select a column
col_unparsed = st.selectbox("Select column corresponding to text", data.columns)
if st.button("Parse Dataset") and st.session_state['json_format']:
if API_KEY:
# Only validate if the API key has changed
if API_KEY != st.session_state['previous_api_key']:
if is_api_key_valid(API_KEY):
st.session_state['api_key_valid'] = True
st.session_state['previous_api_key'] = API_KEY
st.success("API key is valid!")
else:
st.session_state['api_key_valid'] = False
st.error("Invalid API key. Please check and try again.")
elif st.session_state['api_key_valid']:
st.success("API key is valid!")
if not API_KEY:# or not st.session_state['api_key_valid']:
st.warning("Please enter your API key to proceed.")
st.stop()
selected_column_data = filtered_data[col_unparsed].tolist()
st.session_state.result = selected_column_data
with st.status("Parsing...", expanded=True) as stat:
try:
st.write("Parsing descriptions...")
parser = CachedUAPParser(api_key=API_KEY, model='gpt-4o-mini', col=st.session_state.result)
descriptions = st.session_state.result
format_long = FORMAT_LONG
parser.process_descriptions(descriptions, format_long)
st.session_state['parsed_responses'] = parser.parse_responses()
try:
responses_df = parser.responses_to_df('sightingDetails', st.session_state['parsed_responses'])
except Exception as e:
st.warning(f"Error parsing with 'sightingDetails': {e}")
responses_df = parser.responses_to_df(None, st.session_state['parsed_responses'])
if not responses_df.empty:
st.dataframe(responses_df)
st.session_state['parsed_responses_df'] = responses_df.copy()
stat.update(label="Parsing complete", state="complete", expanded=False)
else:
st.error("Failed to create DataFrame from parsed responses.")
except Exception as e:
st.error(f"An error occurred during parsing: {str(e)}")
# Add download button for parsed data
if st.session_state['parsed_responses'] is not None:
json_str = download_json(st.session_state['parsed_responses'])
st.download_button(
label="Download Parsed Data as JSON",
data=json_str,
file_name="parsed_responses.json",
mime="application/json"
)
# Add button to convert cached data to DataFrame
if st.button("Convert Cached Data to DataFrame"):
convert_cached_data_to_df(st.session_state['parsed_responses'])
if st.session_state['parsed_responses_df'] is not None:
st.download_button(
label="Save CSV",
data=convert_df(st.session_state['parsed_responses_df']),
file_name="uap_data.csv",
mime="text/csv",
)
#except Exception as e:
# stat.update(label=f"Parsing failed: {e}", state="error")
# st.write("Parsing descriptions...")
# st.update_status("Parsing descriptions...")